▼
Scroll to page 2
of
646
TNC 620 Manuel utilisateur Programmation des cycles Logiciels CN 817600-07 817601-07 817605-07 Français (fr) 10/2019 Sommaire 2 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire Sommaire 1 Principes de base........................................................................................................................... 35 2 Principes de base / vues d'ensemble........................................................................................... 49 3 Utiliser les cycles d'usinage.......................................................................................................... 53 4 Cycles d'usinage : perçage............................................................................................................ 75 5 Cycles d'usinage : taraudage / fraisage de filets.......................................................................121 6 Cycles d'usinage : fraisage de poches/ tenons / rainures........................................................ 159 7 Cycles : conversions de coordonnées........................................................................................ 211 8 Cycles d'usinage : définitions de motifs.................................................................................... 239 9 Cycles d'usinage : poche avec contour...................................................................................... 251 10 Cycles d'usinage : fraisage de contour optimisé.......................................................................299 11 Cycles d'usinage : corps d'un cylindre....................................................................................... 319 12 Cycles d'usinage : poche de contour avec formule de contour............................................... 339 13 Cycles : fonctions spéciales.........................................................................................................355 14 Travail avec les cycles palpeurs.................................................................................................. 383 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce................393 16 Cycles palpeurs : initialisation automatique des points d'origine...........................................445 17 Cycles palpeurs : contrôle automatique des pièces................................................................. 507 18 Cycles palpeurs : fonctions spéciales.........................................................................................555 19 Cycles palpeurs : mesure automatique de la cinématique...................................................... 579 20 Cycles palpeurs : étalonnage automatique des outils..............................................................615 21 Tableau récapitulatif: Cycles........................................................................................................639 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Sommaire 4 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 1 Principes de base........................................................................................................................... 35 1.1 Remarques sur ce manuel.................................................................................................................. 36 1.2 Type de commande, logiciel et fonctions..........................................................................................38 Options de logiciel................................................................................................................................. 39 1.3 Nouvelles fonctions de cycles et fonctions de cycles modifiées dans les logiciels 81760x-06......44 1.4 Nouvelles fonctions de cycles et fonctions de cycles modifiées dans les logiciels 81760x-07......46 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Sommaire 2 Principes de base / vues d'ensemble........................................................................................... 49 2.1 Introduction...........................................................................................................................................50 2.2 Groupes de cycles disponibles........................................................................................................... 51 Résumé des cycles d'usinage............................................................................................................... 51 Résumé des cycles de palpage.............................................................................................................52 6 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 3 Utiliser les cycles d'usinage.......................................................................................................... 53 3.1 Travailler avec les cycles d'usinage.................................................................................................... 54 Cycles spécifiques machine (option 19)................................................................................................. 54 Définir un cycle avec les softkeys......................................................................................................... 55 Définir le cycle avec la fonction GOTO..................................................................................................55 Appeler des cycles.................................................................................................................................56 3.2 Paramètres de cycles par défaut........................................................................................................ 59 Résumé.................................................................................................................................................. 59 Introduire GLOBAL DEF.........................................................................................................................60 Utiliser les données GLOBAL DEF........................................................................................................ 61 Données d'ordre général à effet global................................................................................................. 62 Données à effet global pour les cycles de perçage.............................................................................. 62 Données à effet global pour les cycles de fraisage de poches 25x...................................................... 62 Données à effet global pour les opérations de fraisage avec cycles de contours................................. 63 Données à effet global pour le comportement de positionnement.......................................................63 Données à effet global pour les fonctions de palpage.......................................................................... 63 3.3 Motif d'usinage PATTERN DEF............................................................................................................64 Application.............................................................................................................................................. 64 Programmer PATTERN DEF................................................................................................................... 65 Utiliser PATTERN DEF............................................................................................................................65 Définir des positions d'usinage............................................................................................................. 66 Définir une seule rangée....................................................................................................................... 66 Définir un motif......................................................................................................................................67 Définir un cadre..................................................................................................................................... 68 Définir un cercle entier.......................................................................................................................... 69 Définir un segment de de cercle...........................................................................................................70 3.4 Tableaux de points...............................................................................................................................71 Description............................................................................................................................................. 71 Programmer un tableau de points......................................................................................................... 71 Ignorer certains points pour l'usinage................................................................................................... 72 Sélectionner le tableau de points dans le programme CN.................................................................... 72 Appeler le cycle en lien avec les tableaux de points.............................................................................73 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Sommaire 4 Cycles d'usinage : perçage............................................................................................................ 75 4.1 Principes de base................................................................................................................................. 76 Résumé.................................................................................................................................................. 76 4.2 PERCAGE (cycle 200, DIN/ISO : G200)............................................................................................... 77 Mode opératoire du cycle......................................................................................................................77 Attention lors de la programmation !.....................................................................................................78 Paramètres du cycle.............................................................................................................................. 79 4.3 ALESAGE A L'ALESOIR (cycle 201,DIN/ISO : G201, option 19)........................................................80 Mode opératoire du cycle......................................................................................................................80 Attention lors de la programmation !.....................................................................................................80 Paramètres du cycle.............................................................................................................................. 81 4.4 ALESAGE A L'OUTIL (cycle 202, DIN/ISO : G202, option 19)...........................................................82 Mode opératoire du cycle......................................................................................................................82 Attention lors de la programmation !.....................................................................................................83 Paramètres du cycle.............................................................................................................................. 85 4.5 PERCAGE UNIVERSEL (cycle 203, DIN/ISO : G203, option 19)........................................................86 Mode opératoire du cycle......................................................................................................................86 Attention lors de la programmation !.....................................................................................................89 Paramètres du cycle.............................................................................................................................. 90 4.6 LAMAGE EN TIRANT (cycle 204, DIN/ISO : G204, option 19).......................................................... 92 Mode opératoire du cycle......................................................................................................................92 Attention lors de la programmation !.....................................................................................................93 Paramètres du cycle.............................................................................................................................. 94 4.7 PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19)...................................... 96 Mode opératoire du cycle......................................................................................................................96 Attention lors de la programmation !.....................................................................................................97 Paramètres du cycle.............................................................................................................................. 98 Comportement du positionnement lors du travail avec Q379............................................................. 100 4.8 FRAISAGE DE TROUS (cycle 208, DIN/ISO : G208, option 19).......................................................104 Mode opératoire du cycle....................................................................................................................104 Attention lors de la programmation !...................................................................................................105 Paramètres du cycle............................................................................................................................ 106 4.9 PERCAGE PROFOND MONOLEVRE (cycle 241, DIN/ISO : G241, option 19).................................107 Mode opératoire du cycle....................................................................................................................107 Attention lors de la programmation !...................................................................................................108 Paramètres du cycle............................................................................................................................ 109 Comportement du positionnement lors du travail avec Q379............................................................. 111 8 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 4.10 CENTRAGE (cycle 240, DIN/ISO : G240, option 19)........................................................................ 115 Mode opératoire du cycle....................................................................................................................115 Attention lors de la programmation!....................................................................................................115 Paramètres du cycle............................................................................................................................ 116 4.11 Exemples de programmation........................................................................................................... 117 Exemple : cycles de perçage............................................................................................................... 117 Exemple : utilisation des cycles de perçage en liaison avec PATTERN DEF........................................118 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Sommaire 5 Cycles d'usinage : taraudage / fraisage de filets.......................................................................121 5.1 Principes de base............................................................................................................................... 122 Vue d'ensemble................................................................................................................................... 122 5.2 TARAUDAGE avec mandrin de compensation (cycle 206, DIN/ISO : G206)................................. 123 Mode opératoire du cycle....................................................................................................................123 Attention lors de la programmation!....................................................................................................124 Paramètres du cycle............................................................................................................................ 125 5.3 TARAUDAGE sans mandrin de compensation GS (cycle 207, DIN/ISO : G207)............................ 126 Mode opératoire du cycle....................................................................................................................126 Attention lors de la programmation !...................................................................................................126 Paramètres du cycle............................................................................................................................ 129 Dégagement en cas d'interruption du programme............................................................................. 130 5.4 TARAUDAGE AVEC BRISE-COPEAUX(cycle 209, DIN/ISO : G209, option 19)...............................131 Mode opératoire du cycle....................................................................................................................131 Attention lors de la programmation !...................................................................................................131 Paramètres du cycle............................................................................................................................ 133 Dégagement en cas d'interruption du programme............................................................................. 134 5.5 Principes de base du fraisage de filets............................................................................................ 135 Conditions requises..............................................................................................................................135 5.6 FRAISAGE DE FILETS (cycle 262, DIN/ISO : G262, option 19)....................................................... 137 Mode opératoire du cycle....................................................................................................................137 Attention lors de la programmation !...................................................................................................138 Paramètres du cycle............................................................................................................................ 139 5.7 FILETAGE SUR UN TOUR (cycle 263, DIN/ISO : G263, option 19)................................................. 141 Mode opératoire du cycle....................................................................................................................141 Attention lors de la programmation !...................................................................................................142 Paramètres du cycle............................................................................................................................ 143 5.8 FILETAGE AVEC PERCAGE (cycle 264, DIN/ISO : G264, option 19)............................................... 145 Mode opératoire du cycle....................................................................................................................145 Attention lors de la programmation !...................................................................................................146 Paramètres du cycle............................................................................................................................ 147 5.9 FILETAGE AVEC PERCAGE HELICOIDAL (cycle 265, DIN/ISO : G265, option 19)......................... 149 Mode opératoire du cycle....................................................................................................................149 Attention lors de la programmation !...................................................................................................150 Paramètres du cycle............................................................................................................................ 151 5.10 FRAISAGE DE FILET EXTERIEUR(cycle 267, DIN/ISO : G267, option 19).......................................153 Mode opératoire du cycle....................................................................................................................153 10 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire Attention lors de la programmation !...................................................................................................154 Paramètres du cycle............................................................................................................................ 155 5.11 Exemples de programmation........................................................................................................... 157 Exemple : Taraudage............................................................................................................................ 157 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 11 Sommaire 6 Cycles d'usinage : fraisage de poches/ tenons / rainures........................................................ 159 6.1 Principes de base............................................................................................................................... 160 Vue d'ensemble................................................................................................................................... 160 6.2 POCHE RECTANGULAIRE (cycle 251, DIN/ISO : G251, option 19).................................................161 Mode opératoire du cycle....................................................................................................................161 Attention lors de la programmation !...................................................................................................162 Paramètres du cycle............................................................................................................................ 164 6.3 POCHE CIRCULAIRE (cycle 252, DIN/ISO : G251, option 19)..........................................................167 Mode opératoire du cycle....................................................................................................................167 Attention lors de la programmation!....................................................................................................169 Paramètres du cycle............................................................................................................................ 171 6.4 FRAISAGE DE RAINURES (cycle 253, DIN/ISO : G253, option 19)................................................ 174 Mode opératoire du cycle....................................................................................................................174 Attention lors de la programmation!....................................................................................................175 Paramètres du cycle............................................................................................................................ 176 6.5 RAINURE RONDE (cycle 254, DIN/ISO : G254, option 19)..............................................................179 Mode opératoire du cycle....................................................................................................................179 Attention lors de la programmation !...................................................................................................180 Paramètres du cycle............................................................................................................................ 182 6.6 TENON RECTANGULAIRE (cycle 256, DIN/ISO : G256, option 19)................................................ 185 Mode opératoire du cycle....................................................................................................................185 Attention lors de la programmation !...................................................................................................186 Paramètres du cycle............................................................................................................................ 187 6.7 TENON CIRCULAIRE (cycle 257, DIN/ISO : G251, option 19)..........................................................190 Mode opératoire du cycle....................................................................................................................190 Attention lors de la programmation !...................................................................................................191 Paramètres du cycle............................................................................................................................ 192 6.8 TENON POLYGONAL (cycle 258, DIN/ISO : G258, option 19)........................................................ 194 Mode opératoire du cycle....................................................................................................................194 Attention lors de la programmation !...................................................................................................195 Paramètres du cycle............................................................................................................................ 197 6.9 SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19)...................................................................... 200 Mode opératoire du cycle....................................................................................................................200 Attention lors de la programmation !...................................................................................................204 Paramètres du cycle............................................................................................................................ 205 6.10 Exemples de programmation........................................................................................................... 209 Exemple : Fraisage de poche, tenon, rainure...................................................................................... 209 12 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 7 Cycles : conversions de coordonnées........................................................................................ 211 7.1 Principes de base............................................................................................................................... 212 Résumé................................................................................................................................................ 212 Effet des conversions de coordonnées............................................................................................... 212 7.2 Décalage du POINT ZERO (cycle 7, DIN/ISO : G54).........................................................................213 Effet...................................................................................................................................................... 213 Attention lors de la programmation..................................................................................................... 213 Paramètres du cycle............................................................................................................................ 214 7.3 Décalage de POINT ZERO avec des tableaux de points zéro (cycle 7, DIN/ISO: G53)..................215 Effet...................................................................................................................................................... 215 Attention lors de la programmation!....................................................................................................216 Paramètres du cycle............................................................................................................................ 216 Sélectionner le tableau de points zéro dans le programme CN.......................................................... 217 Editer un tableau de points zéro en mode Programmation.................................................................217 Editer un tableau de points zéro en mode Exécution de programme en continu/pas-à-pas................ 219 Configurer le tableau points zéro........................................................................................................ 219 Quitter le tableau points zéro.............................................................................................................. 220 Affichages d’état.................................................................................................................................. 220 7.4 MISE EN MIROIR (cycle 8, DIN/ISO : G28)...................................................................................... 221 Effet...................................................................................................................................................... 221 Attention lors de la programmation !...................................................................................................222 Paramètres du cycle............................................................................................................................ 222 7.5 ROTATION (cycle 10, DIN/ISO : G73)................................................................................................ 223 Effet...................................................................................................................................................... 223 Attention lors de la programmation !...................................................................................................224 Paramètres du cycle............................................................................................................................ 224 7.6 FACTEUR D'ECHELLE (cycle 11, DIN/ISO : G72)..............................................................................225 Effet...................................................................................................................................................... 225 Paramètres du cycle............................................................................................................................ 225 7.7 FACTEUR D'ECHELLE SPECIFIQUE A L'AXE (cycle 26).................................................................. 226 Effet...................................................................................................................................................... 226 Attention lors de la programmation !...................................................................................................226 Paramètres du cycle............................................................................................................................ 227 7.8 PLAN D'USINAGE (cycle 19, DIN/ISO : G80, option 1)................................................................... 228 Effet...................................................................................................................................................... 228 Attention lors de la programmation !...................................................................................................229 Paramètres du cycle............................................................................................................................ 230 Désactivation........................................................................................................................................ 231 Positionner les axes rotatifs.................................................................................................................231 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Sommaire Affichage de positions dans le système incliné...................................................................................232 Surveillance de la zone d’usinage........................................................................................................232 Positionnement dans le système incliné............................................................................................. 233 Combinaison avec d’autres cycles de conversion de coordonnées.....................................................233 Marche à suivre lorsque vous travaillez avec le cycle 19 Plan d'usinage.............................................234 7.9 INIT. PT DE REF. (cycle 247, DIN/ISO : G247)................................................................................... 235 Effet...................................................................................................................................................... 235 Attention avant de programmer!......................................................................................................... 235 Paramètres du cycle............................................................................................................................ 235 Affichages d’état.................................................................................................................................. 235 7.10 Exemples de programmation........................................................................................................... 236 Exemple : Cycles de conversion de coordonnées............................................................................... 236 14 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 8 Cycles d'usinage : définitions de motifs.................................................................................... 239 8.1 Principes de base............................................................................................................................... 240 Vue d'ensemble................................................................................................................................... 240 8.2 MOTIF DE POINTS SUR CERCLE (cycle 220, DIN/ISO : G220, option 19)..................................... 242 Mode opératoire du cycle....................................................................................................................242 Attention lors de la programmation!....................................................................................................242 Paramètres du cycle............................................................................................................................ 243 8.3 MOTIF DE POINTS EN GRILLE (cycle 221, DIN/ISO : G221, option 19)......................................... 245 Mode opératoire du cycle....................................................................................................................245 Attention lors de la programmation !...................................................................................................245 Paramètres du cycle............................................................................................................................ 246 8.4 MOTIF CODE DATAMATRIX (cycle 224, DIN/ISO : G224, option 19)..............................................247 Déroulement du cycle..........................................................................................................................247 Attention lors de la programmation !...................................................................................................247 Paramètres du cycle............................................................................................................................ 248 8.5 Exemples de programmation........................................................................................................... 249 Exemple : Cercles de trous................................................................................................................. 249 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Sommaire 9 Cycles d'usinage : poche avec contour...................................................................................... 251 9.1 Cycles SL.............................................................................................................................................252 Principes de base.................................................................................................................................252 Résumé................................................................................................................................................ 254 9.2 CONTOUR (cycle 14, DIN/ISO : G37)................................................................................................255 Attention lors de la programmation!....................................................................................................255 Paramètres du cycle............................................................................................................................ 255 9.3 Contours superposés......................................................................................................................... 256 Principes de base.................................................................................................................................256 Sous-programmes : poches superposées............................................................................................256 Surface „d'addition“.............................................................................................................................257 Surface „de soustraction“................................................................................................................... 258 Surface „d'intersection“...................................................................................................................... 259 9.4 DONNEES DE CONTOUR (cycle 20, DIN/ISO : G120, option 19)................................................... 260 Attention lors de la programmation !...................................................................................................260 Paramètres du cycle............................................................................................................................ 261 9.5 PRE-PERÇAGE (cycle 21, DIN/ISO : G121, option 19)..................................................................... 262 Mode opératoire du cycle....................................................................................................................262 Attention lors de la programmation !...................................................................................................263 Paramètres du cycle............................................................................................................................ 263 9.6 EVIDEMENT (cycle 22, DIN/ISO : G122, option 19).........................................................................264 Mode opératoire du cycle....................................................................................................................264 Attention lors de la programmation !...................................................................................................265 Paramètres du cycle............................................................................................................................ 267 9.7 FINITION DE PROFONDEUR (cycle 23, DIN/ISO : G123, option 19)...............................................269 Mode opératoire du cycle....................................................................................................................269 Attention lors de la programmation !...................................................................................................270 Paramètres du cycle............................................................................................................................ 270 9.8 FINITION LATERALE (cycle 24, DIN/ISO : G124, option 19)........................................................... 271 Mode opératoire du cycle....................................................................................................................271 Attention lors de la programmation !...................................................................................................272 Paramètres du cycle............................................................................................................................ 274 9.9 DONNEES DU TRACE DE CONTOUR (cycle 270, DIN/ISO : G270, option 19).............................. 275 Attention lors de la programmation !...................................................................................................275 Paramètres du cycle............................................................................................................................ 276 9.10 TRACE DE CONTOUR (cycle 25, DIN/ISO : G125, option 19)......................................................... 277 Mode opératoire du cycle....................................................................................................................277 16 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire Attention lors de la programmation !...................................................................................................278 Paramètres du cycle............................................................................................................................ 279 9.11 RAINURE DE CONTOUR TROCHOÏDALE (cycle 275, DIN/ISO : G275, option 19).........................281 Mode opératoire du cycle....................................................................................................................281 Attention lors de la programmation !...................................................................................................283 Paramètres du cycle............................................................................................................................ 284 9.12 TRACE DE CONTOUR 3D (cycle 276, DIN/ISO : G276, option 19)..................................................287 Déroulement du cycle..........................................................................................................................287 Attention lors de la programmation !...................................................................................................288 Paramètres du cycle............................................................................................................................ 290 9.13 Exemples de programmation........................................................................................................... 292 Exemple: Evidement et semi-finition d'une poche.............................................................................. 292 Exemple : Pré-perçage, ébauche et finition de contours superposés..................................................294 Exemple: Tracé de contour.................................................................................................................. 296 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Sommaire 10 Cycles d'usinage : fraisage de contour optimisé.......................................................................299 10.1 Cycles OCM (option 167)...................................................................................................................300 Principes de base OCM.......................................................................................................................300 Vue d'ensemble................................................................................................................................... 302 10.2 DONNEES DE CONTOUR OCM (cycle 271, DIN/ISO : G271, option 167)......................................303 Déroulement du cycle..........................................................................................................................303 Attention lors de la programmation !...................................................................................................303 Paramètres du cycle............................................................................................................................ 303 10.3 EBAUCHE OCM (cycle 272, DIN/ISO : G272, option 167)............................................................... 305 Déroulement du cycle..........................................................................................................................305 Attention lors de la programmation !...................................................................................................306 Paramètres du cycle............................................................................................................................ 307 10.4 FINITION EN PROFONDEUR OCM (cycle 273, DIN/ISO: G273, option 167)..................................309 Déroulement du cycle..........................................................................................................................309 Attention lors de la programmation !...................................................................................................309 Paramètres du cycle............................................................................................................................ 310 10.5 FINITION LATERALE OCM (cycle 274, DIN/ISO : G274, option 167).............................................. 311 Déroulement du cycle..........................................................................................................................311 Attention lors de la programmation !...................................................................................................311 Paramètres du cycle............................................................................................................................ 312 10.6 Exemples de programmation........................................................................................................... 313 Exemple : Poche ouverte et reprise d'évidement avec des cycles OCM............................................ 313 Exemple : Différentes profondeurs avec des cycles OCM.................................................................. 316 18 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 11 Cycles d'usinage : corps d'un cylindre....................................................................................... 319 11.1 Principes de base............................................................................................................................... 320 Résumé des cycles sur corps d'un cylindre........................................................................................320 11.2 POURTOUR CYLINDRIQUE (cycle 27, DIN/ISO : G127, option 1)....................................................321 Déroulement du cycle..........................................................................................................................321 Attention lors de la programmation !...................................................................................................322 Paramètres du cycle............................................................................................................................ 323 11.3 POURTOUR CYLINDRIQUE Rainurage (cycle 28, DIN/ISO : G128, option 1)................................ 324 Mode opératoire du cycle....................................................................................................................324 Attention lors de la programmation !...................................................................................................325 Paramètres du cycle............................................................................................................................ 327 11.4 POURTOUR CYLINDRIQUE Fraisage de traverse (cycle 29, DIN/ISO : G129, option 1)................329 Mode opératoire du cycle....................................................................................................................329 Attention lors de la programmation !...................................................................................................330 Paramètres du cycle............................................................................................................................ 331 11.5 CONTOUR POURTOUR CYLINDRIQUE (cycle 39, DIN/ISO : G139, option 1)............................... 332 Exécution d'un cycle............................................................................................................................ 332 Attention lors de la programmation !...................................................................................................333 Paramètres du cycle............................................................................................................................ 334 11.6 Exemples de programmation........................................................................................................... 335 Exemple : corps d'un cylindre avec le cycle 27...................................................................................335 Exemple : corps d'un cylindre avec le cycle 28...................................................................................337 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 19 Sommaire 12 Cycles d'usinage : poche de contour avec formule de contour............................................... 339 12.1 Cycles S avec formule de contour complexe.................................................................................. 340 Principes de base.................................................................................................................................340 Sélectionner le programme CN avec les définitions de contours........................................................342 Définir les descriptions de contour......................................................................................................343 Introduire une formule complexe de contour...................................................................................... 344 Contours superposés........................................................................................................................... 345 Usinage du contour avec les cycles SL...............................................................................................347 Exemple : Ebauche et finition de contours superposés avec formule de contour............................... 348 12.2 Cycles SL avec formule de contour simple..................................................................................... 351 Principes de base.................................................................................................................................351 Introduire une formule simple de contour...........................................................................................353 Usinage du contour avec les cycles SL...............................................................................................354 20 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 13 Cycles : fonctions spéciales.........................................................................................................355 13.1 Principes de base............................................................................................................................... 356 Résumé................................................................................................................................................ 356 13.2 TEMPORISATION (cycle 9, DIN/ISO : G04)...................................................................................... 357 Fonction................................................................................................................................................ 357 Paramètres du cycle............................................................................................................................ 357 13.3 APPEL DE PROGRAMME (cycle 12, DIN/ISO : G39)........................................................................358 Fonction du cycle................................................................................................................................. 358 Attention lors de la programmation !...................................................................................................358 Paramètres du cycle............................................................................................................................ 359 13.4 ORIENTATION BROCHE (cycle 13, DIN/ISO : G36).......................................................................... 360 Fonction du cycle................................................................................................................................. 360 Attention lors de la programmation!....................................................................................................360 Paramètres du cycle............................................................................................................................ 360 13.5 TOLERANCE (cycle 32, DIN/ISO : G62)............................................................................................ 361 Fonction du cycle................................................................................................................................. 361 Influences lors de la définition géométrique dans le système de FAO............................................... 361 Attention lors de la programmation !...................................................................................................362 Paramètres du cycle............................................................................................................................ 364 13.6 GRAVURE (cycle 225, DIN/ISO : G225)............................................................................................ 365 Mode opératoire du cycle....................................................................................................................365 Attention lors de la programmation !...................................................................................................365 Paramètres du cycle............................................................................................................................ 366 Caractères autorisés............................................................................................................................ 368 Caractères non imprimables................................................................................................................ 368 Graver des variables du système........................................................................................................ 369 Graver le nom et le chemin d'un programme CN............................................................................... 370 Graver l’état du compteur....................................................................................................................370 13.7 FRAISAGE TRANSVERSAL (cycle 232, DIN/ISO : G232, option de logiciel 19)............................ 371 Mode opératoire du cycle....................................................................................................................371 Attention lors de la programmation !...................................................................................................373 Paramètres du cycle............................................................................................................................ 374 13.8 MESURE ETAT MACHINE (cycle 238, DIN/ISO: G238, option 155)................................................ 376 Application............................................................................................................................................ 376 Attention lors de la programmation !...................................................................................................377 Paramètres du cycle............................................................................................................................ 377 13.9 CALCUL DE LA CHARGE (cycle 239, DIN/ISO : G239, option 143)................................................ 378 Déroulement du cycle..........................................................................................................................378 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 21 Sommaire Attention lors de la programmation !...................................................................................................380 Paramètres du cycle............................................................................................................................ 380 13.10 FILETAGE (cycle 18, DIN/ISO: G86, option 19)................................................................................ 381 Déroulement du cycle..........................................................................................................................381 Attention lors de la programmation !...................................................................................................381 Paramètres du cycle............................................................................................................................ 382 22 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 14 Travail avec les cycles palpeurs.................................................................................................. 383 14.1 Généralités sur les cycles palpeurs..................................................................................................384 Mode opératoire...................................................................................................................................384 Tenir compte de la rotation de base en mode Manuel....................................................................... 384 Cycles palpeurs des modes Manuel et Manivelle électronique.......................................................... 384 Des cycles palpeurs en mode automatique........................................................................................ 385 14.2 Avant de travailler avec les cycles palpeurs!.................................................................................. 387 Course de déplacement maximale au point de palpage : DIST dans le tableau de palpeurs............... 387 Distance d'approche jusqu’au point de palpage : SET_UP dans le tableau de palpeurs...................... 387 Orienter le palpeur infrarouge dans le sens de palpage programmé : TRACK dans le tableau palpeurs................................................................................................................................................ 387 Palpeur à commutation, avance de palpage : F dans le tableau de palpeurs...................................... 388 Palpeur à commutation, avance pour déplacements de positionnement : FMAX............................... 388 Palpeur à commutation, avance rapide pour les déplacements de positionnement : F_PREPOS dans le tableau de palpeurs..............................................................................................................................388 Exécuter les cycles palpeurs............................................................................................................... 389 14.3 Tableau de palpeurs...........................................................................................................................390 Information générale............................................................................................................................ 390 Editer des tableaux de palpeurs.......................................................................................................... 390 Données du palpeur.............................................................................................................................391 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 23 Sommaire 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce................393 15.1 Récapitulatif........................................................................................................................................ 394 15.2 Principes de base des cycles de palpage 14xx............................................................................... 396 Points communs des cycles palpeurs 14xx......................................................................................... 396 Mode semi-automatique...................................................................................................................... 398 Evaluation des tolérances.................................................................................................................... 403 Transfert d'une position effective.........................................................................................................404 15.3 PALPAGE DU PLAN (cycle 1420, DIN/ISO : G1420, option 17)....................................................... 405 Déroulement du cycle..........................................................................................................................405 Attention lors de la programmation !...................................................................................................406 Paramètres du cycle............................................................................................................................ 407 15.4 PALPAGE D'UNE ARETE (cycle 1410, DIN/ISO : G1420, option 17)................................................410 Déroulement du cycle..........................................................................................................................410 Attention lors de la programmation !...................................................................................................411 Paramètres du cycle............................................................................................................................ 412 15.5 PALPAGE DE DEUX CERCLES (cycle 1411, DIN/ISO : G1420, option 17).......................................415 Déroulement du cycle..........................................................................................................................415 Attention lors de la programmation !...................................................................................................417 Paramètres du cycle............................................................................................................................ 418 15.6 Principes de base des cycles palpeurs 4xx..................................................................................... 421 Particularités communes aux cycles palpeurs pour déterminer le désalignement d'une pièce........... 421 15.7 ROTATION DE BASE (cycle 400, DIN/ISO : G400, option 17)......................................................... 422 Mode opératoire du cycle....................................................................................................................422 Attention lors de la programmation !...................................................................................................422 Paramètres du cycle............................................................................................................................ 423 15.8 ROTATION DE BASE via deux trous (cycle 401, DIN/ISO: G401, option 17)..................................425 Mode opératoire du cycle....................................................................................................................425 Attention lors de la programmation !...................................................................................................426 Paramètres du cycle............................................................................................................................ 427 15.9 ROTATION DE BASE via deux tenons (cycle 402, DIN/ISO: G402, option 17)...............................429 Mode opératoire du cycle....................................................................................................................429 Attention lors de la programmation !...................................................................................................430 Paramètres du cycle............................................................................................................................ 431 15.10 Compenser une ROTATION DE BASE via un axe rotatif (cycle 403, DIN/ISO : G403, option 17)............................................................................................................................................ 434 Mode opératoire du cycle....................................................................................................................434 24 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire Attention lors de la programmation !...................................................................................................435 Paramètres du cycle............................................................................................................................ 436 15.11 Rotation via l'axe C (cycle 405, DIN/ISO : G405, option 17)...........................................................439 Mode opératoire du cycle....................................................................................................................439 Attention lors de la programmation !...................................................................................................440 Paramètres du cycle............................................................................................................................ 441 15.12 DEFINIR ROTATION DE BASE (cycle 404, DIN/ISO : G404, option 17)...........................................443 Mode opératoire du cycle....................................................................................................................443 Paramètres du cycle............................................................................................................................ 443 15.13 Exemple : déterminer la rotation de base à l'aide de deux trous................................................. 444 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 25 Sommaire 16 Cycles palpeurs : initialisation automatique des points d'origine...........................................445 16.1 Principes de base............................................................................................................................... 446 Vue d'ensemble................................................................................................................................... 446 Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine.............. 448 16.2 POINT D'ORIGINE RECTANGLE INTERIEUR (cycle 410, DIN/ISO : G410, option 17).................... 450 Mode opératoire du cycle....................................................................................................................450 Attention lors de la programmation !...................................................................................................451 Paramètres du cycle............................................................................................................................ 452 16.3 POINT D'ORIGINE RECTANGLE EXTERIEUR (cycle 411, DIN/ISO : G411, option 17)................... 454 Mode opératoire du cycle....................................................................................................................454 Attention lors de la programmation !...................................................................................................455 Paramètres du cycle............................................................................................................................ 456 16.4 POINT D'ORIGINE CERCLE INTERIEUR (cycle 412, DIN/ISO : G412, option 17)........................... 458 Mode opératoire du cycle....................................................................................................................458 Attention lors de la programmation !...................................................................................................459 Paramètres du cycle............................................................................................................................ 460 16.5 POINT D'ORIGINE CERCLE EXTERIEUR (cycle 413, DIN/ISO : G413, option 17).......................... 463 Mode opératoire du cycle....................................................................................................................463 Attention lors de la programmation !...................................................................................................464 Paramètres du cycle............................................................................................................................ 465 16.6 POINT D'ORIGINE COINS EXTERIEURS (cycle 414, DIN/ISO : G414, option 17).......................... 468 Mode opératoire du cycle....................................................................................................................468 Attention lors de la programmation !...................................................................................................469 Paramètres du cycle............................................................................................................................ 470 16.7 POINT D'ORIGINE COIN INTERIEUR (cycle 415, DIN/ISO : G415, option 17)................................473 Mode opératoire du cycle....................................................................................................................473 Attention lors de la programmation !...................................................................................................474 Paramètres du cycle............................................................................................................................ 475 16.8 POINT D'ORIGINE CENTRE DU CERCLE DE TROUS (cycle 416, DIN/ISO: G416, option 17)........478 Mode opératoire du cycle....................................................................................................................478 Attention lors de la programmation !...................................................................................................479 Paramètres du cycle............................................................................................................................ 480 16.9 POINT D'ORIGINE AXE DE PALPAGE (cycle 417, DIN/ISO : G417, option 17)................................ 483 Mode opératoire du cycle....................................................................................................................483 Attention lors de la programmation !...................................................................................................483 Paramètres du cycle............................................................................................................................ 484 26 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 16.10 POINT D'ORIGINE CENTRE 4 TROUS (cycle 418, DIN/ISO : G418, option 17).............................. 486 Mode opératoire du cycle....................................................................................................................486 Attention lors de la programmation !...................................................................................................487 Paramètres du cycle............................................................................................................................ 488 16.11 POINT D'ORIGINE AXE INDIVIDUEL (cycle 419, DIN/ISO : G419, option 17)................................491 Mode opératoire du cycle....................................................................................................................491 Attention lors de la programmation !...................................................................................................491 Paramètres du cycle............................................................................................................................ 492 16.12 POINT D'ORIGINE CENTRE RAINURE (cycle 408, DIN/ISO : G408, option 17)............................. 494 Mode opératoire du cycle....................................................................................................................494 Attention lors de la programmation !...................................................................................................495 Paramètres du cycle............................................................................................................................ 496 16.13 POINT D'ORIGINE CENTRE ILOT (cycle 409, 'DIN/ISO : G409, option 17).....................................499 Mode opératoire du cycle....................................................................................................................499 Attention lors de la programmation !...................................................................................................500 Paramètres du cycle............................................................................................................................ 501 16.14 Exemple : Définition d'un point d'origine au centre d'un segment circulaire et arête supérieure de la pièce...........................................................................................................................................503 16.15 Exemple : Définition du point d'origine de l'arête supérieure de la pièce et centre du cercle de trous.....................................................................................................................................................504 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 27 Sommaire 17 Cycles palpeurs : contrôle automatique des pièces................................................................. 507 17.1 Principes de base............................................................................................................................... 508 Résumé................................................................................................................................................ 508 Enregistrer les résultats des mesures.................................................................................................509 Résultats de la mesure dans les paramètres Q.................................................................................. 511 Etat de la mesure................................................................................................................................ 511 Surveillance de la tolérance................................................................................................................. 511 Surveillance de l'outil........................................................................................................................... 512 Système de référence pour les résultats de la mesure...................................................................... 513 17.2 PLAN DE REFERENCE (cycle 0, DIN/ISO : G55, option 17)............................................................ 514 Mode opératoire du cycle....................................................................................................................514 Attention lors de la programmation!....................................................................................................514 Paramètres du cycle............................................................................................................................ 514 17.3 PLAN DE REFERENCE polaire (cycle 1, option 17)..........................................................................515 Mode opératoire du cycle....................................................................................................................515 Attention lors de la programmation !...................................................................................................515 Paramètres du cycle............................................................................................................................ 516 17.4 MESURE ANGLE (cycle 420, DIN/ISO : G420, option 17)............................................................... 517 Mode opératoire du cycle....................................................................................................................517 Attention lors de la programmation !...................................................................................................517 Paramètres du cycle............................................................................................................................ 518 17.5 MESURER TROU (cycle 421, DIN/ISO : G421, option 17)...............................................................520 Mode opératoire du cycle....................................................................................................................520 Attention lors de la programmation !...................................................................................................521 Paramètres du cycle............................................................................................................................ 522 17.6 MESURE EXTERIEUR CERCLE (cycle 422, DIN/ISO : G422, option 17)......................................... 525 Mode opératoire du cycle....................................................................................................................525 Attention lors de la programmation !...................................................................................................526 Paramètres du cycle............................................................................................................................ 527 17.7 MESURE RECTANGLE INTERIEUR (cycle 423, DIN/ISO : G423, option 17)...................................530 Mode opératoire du cycle....................................................................................................................530 Attention lors de la programmation !...................................................................................................531 Paramètres du cycle............................................................................................................................ 532 17.8 MESURE RECTANGLE EXTERIEUR(cycle 424, DIN/ISO : G424, option 17)...................................534 Mode opératoire du cycle....................................................................................................................534 Attention lors de la programmation !...................................................................................................535 Paramètres du cycle............................................................................................................................ 535 28 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 17.9 MESURE LARGEUR INTERIEUR (cycle 425, DIN/ISO : G425, Option #17).................................... 537 Mode opératoire du cycle....................................................................................................................537 Attention lors de la programmation !...................................................................................................537 Paramètres du cycle............................................................................................................................ 538 17.10 MESURE TRAVERSE EXTERIEURE (cycle 426, DIN/ISO : G426, option 17).................................. 540 Mode opératoire du cycle....................................................................................................................540 Attention lors de la programmation !...................................................................................................540 Paramètres du cycle............................................................................................................................ 541 17.11 MESURE COORDONNEE (cycle 427, DIN/ISO : G427, option 17).................................................. 543 Mode opératoire du cycle....................................................................................................................543 Attention lors de la programmation !...................................................................................................543 Paramètres du cycle............................................................................................................................ 544 17.12 MESURE CERCLE DE TROUS (cycle 430, DIN/ISO : G427, option 17)...........................................546 Déroulement du cycle..........................................................................................................................546 Attention lors de la programmation !...................................................................................................547 Paramètres du cycle............................................................................................................................ 547 17.13 MESURE PLAN (cycle 431, DIN/ISO : G431, option 17)..................................................................549 Mode opératoire du cycle....................................................................................................................549 Attention lors de la programmation !...................................................................................................550 Paramètres du cycle............................................................................................................................ 550 17.14 Exemples de programmation........................................................................................................... 552 Exemple : mesure d'un tenon rectangulaire et reprise d'usinage....................................................... 552 Exemple : mesure d'une poche rectangulaire, procès-verbal de mesure............................................554 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 29 Sommaire 18 Cycles palpeurs : fonctions spéciales.........................................................................................555 18.1 Principes de base............................................................................................................................... 556 Résumé................................................................................................................................................ 556 18.2 MESURE (cycle 3, option 17).............................................................................................................557 Mode opératoire du cycle....................................................................................................................557 Attention lors de la programmation !...................................................................................................557 Paramètres du cycle............................................................................................................................ 558 18.3 MESURE 3D (cycle 4, option #17).....................................................................................................559 Mode opératoire du cycle....................................................................................................................559 Attention lors de la programmation !...................................................................................................560 Paramètres du cycle............................................................................................................................ 561 18.4 PALPAGE RAPIDE (cycle 441, DIN/ISO : G441, option 17).............................................................. 562 Déroulement du cycle..........................................................................................................................562 Attention lors de la programmation !...................................................................................................562 Paramètres du cycle............................................................................................................................ 563 18.5 Etalonner un palpeur à commutation............................................................................................. 564 18.6 Afficher les valeurs d'étalonnage..................................................................................................... 565 18.7 ETALONNAGE LONGUEUR TS (cycle 461, DIN/ISO : G461, option #17).......................................566 18.8 ETALONNAGE RAYON INTERIEURE TS (cycle 462, DIN/ISO : G462, option 17)...........................568 18.9 ETALONNAGE RAYON EXTERIEUR TS (cycle 463, DIN/ISO : G463, option 17)............................ 571 18.10 ETLONNAGE TS (cycle 460, DIN/ISO : G460, option 17)................................................................ 574 30 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 19 Cycles palpeurs : mesure automatique de la cinématique...................................................... 579 19.1 Etalonnage de la cinématique avec des palpeurs TS (option 48)................................................. 580 Principes............................................................................................................................................... 580 Résumé................................................................................................................................................ 581 19.2 Conditions requises........................................................................................................................... 582 Attention lors de la programmation!....................................................................................................583 19.3 SAUVEGARDE DE LA CINEMATIQUE (cycle 450, DIN/ISO : G450, option 48)..............................584 Mode opératoire du cycle....................................................................................................................584 Attention lors de la programmation !...................................................................................................584 Paramètres du cycle............................................................................................................................ 585 Fonction journal.................................................................................................................................... 585 Remarques sur la sauvegarde des données........................................................................................586 19.4 MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48).......................................... 587 Mode opératoire du cycle....................................................................................................................587 Sens du positionnement...................................................................................................................... 589 Machines avec des axes à dentures Hirth.......................................................................................... 590 Exemple de calcul des positions de mesure pour un axe A :............................................................. 591 Choix du nombre de points de mesure...............................................................................................592 Choix de la position de la bille étalon sur la table de la machine........................................................ 593 Mesure de la cinématique : précisionprécision................................................................................... 593 Remarques relatives aux différentes méthodes d'étalonnage............................................................ 594 Jeu à l'inversion................................................................................................................................... 595 Attention lors de la programmation !...................................................................................................596 Paramètres du cycle............................................................................................................................ 598 Différents modes (Q406)..................................................................................................................... 601 Fonction journal.................................................................................................................................... 602 19.5 COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48)..........................................603 Mode opératoire du cycle....................................................................................................................603 Attention lors de la programmation !...................................................................................................605 Paramètres du cycle............................................................................................................................ 607 Réglage des têtes interchangeables....................................................................................................609 Compensation de dérive...................................................................................................................... 611 Fonction journal.................................................................................................................................... 613 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 31 Sommaire 20 Cycles palpeurs : étalonnage automatique des outils..............................................................615 20.1 Principes de base............................................................................................................................... 616 Résumé................................................................................................................................................ 616 Différences entre les cycles 31 à 33 et 481 à 483............................................................................. 617 Définir les paramètres machine...........................................................................................................618 Données du tableau d'outils TOOL.T.................................................................................................. 620 20.2 Etalonner TT (cycle 30 ou 480, DIN/ISO : G480, option 17)........................................................... 622 Mode opératoire du cycle....................................................................................................................622 Attention lors de la programmation!....................................................................................................623 Paramètres du cycle............................................................................................................................ 623 20.3 Mesurer une longueur d'outil (cycle 31 ou 481, DIN/ISO : G481, option 17)................................624 Mode opératoire du cycle....................................................................................................................624 Attention lors de la programmation !...................................................................................................625 Paramètres du cycle............................................................................................................................ 626 20.4 Etalonnage du rayon d'outil (cycle 32 ou 482, DIN/ISO : G482, option 17).................................. 628 Mode opératoire du cycle....................................................................................................................628 Attention lors de la programmation !...................................................................................................629 Paramètres du cycle............................................................................................................................ 630 20.5 Etalonner intégralement l'outil (cycle 33 ou 483, DIN/ISO : G483, option 17)............................. 632 Mode opératoire du cycle....................................................................................................................632 Attention lors de la programmation !...................................................................................................633 Paramètres du cycle............................................................................................................................ 634 20.6 Etalonnage du TT 449 sans fil (cycle 484, DIN/ISO : G484, option 17)..........................................636 Principes............................................................................................................................................... 636 Mode opératoire du cycle....................................................................................................................636 Attention lors de la programmation !...................................................................................................637 Paramètres du cycle............................................................................................................................ 638 32 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Sommaire 21 Tableau récapitulatif: Cycles........................................................................................................639 21.1 Tableau récapitulatif...........................................................................................................................640 Cycles d'usinage.................................................................................................................................. 640 Cycles palpeurs.................................................................................................................................... 642 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 33 1 Principes de base 1 Principes de base | Remarques sur ce manuel 1.1 Remarques sur ce manuel Consignes de sécurité Respecter l'ensemble des consignes de sécurité contenues dans cette documentation et dans celle du constructeur de la machine ! Les consignes de sécurité sont destinées à mettre en garde l'utilisateur devant les risques liés à l'utilisation du logiciel et des appareils et indiquent comment les éviter. Les différents types d'avertissements sont classés par ordre de gravité du danger et sont répartis comme suit : DANGER Danger signale l'existence d'un risque pour les personnes. Si vous ne suivez pas la procédure qui permet d'éviter le risque existant, le danger occasionnera certainement des blessures graves, voire mortelles. AVERTISSEMENT Avertissement signale l'existence d'un risque pour les personnes. Si vous ne suivez pas la procédure qui permet d'éviter le risque existant, le danger pourrait occasionner des blessures graves, voire mortelles. ATTENTION Attention signale l'existence d'un risque pour les personnes. Si vous ne suivez pas la procédure qui permet d'éviter le risque existant, le danger pourrait occasionner de légères blessures. REMARQUE Remarque signale l'existence d'un risque pour les objets ou les données. Si vous ne suivez pas la procédure qui permet d'éviter le risque existant, le danger pourrait occasionner un dégât matériel. Ordre chronologique des informations au sein des consignes des sécurité Toutes les consignes de sécurité comprennent les quatre paragraphes suivants : Mot-clé, indicateur de la gravité du danger Type et source du danger Conséquences en cas de non respect du danger, p. ex. "Risque de collision pour les usinages suivants" Prévention – Mesures de prévention du danger 36 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 1 Principes de base | Remarques sur ce manuel Notes d'information Il est impératif de respecter l'ensemble des notes d'information que contient cette notice afin de garantir un fonctionnement sûr et efficace du logiciel. Cette notice contient plusieurs types d'informations, à savoir : Ce symbole signale une astuce. Une astuce vous fournit des informations supplémentaires ou complémentaires. Ce symbole vous invite à suivre les consignes de sécurité du constructeur de votre machine. Ce symbole vous renvoie aux fonctions dépendantes de la machine. Les risques potentiels pour l'opérateur et la machine sont décrits dans le manuel d'utilisation. Le symbole représentant un livre correspond à un renvoi à une documentation externe, p. ex. à la documentation du constructeur de votre machine ou d'un autre fournisseur. Modifications souhaitées ou découverte d'une "coquille"? Nous nous efforçons en permanence d'améliorer notre documentation. N'hésitez pas à nous faire part de vos suggestions en nous écrivant à l'adresse e-mail suivante : tnc-userdoc@heidenhain.de HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 37 1 Principes de base | Type de commande, logiciel et fonctions 1.2 Type de commande, logiciel et fonctions Ce manuel décrit les fonctions de programmation qui sont disponibles à partir des numéros de versions de logiciel suivants. Type de commande Nr. de logiciel CN TNC 620 817600-07 TNC 620 E 817601-07 TNC 620 Poste de programmation 817605-07 La lettre E désigne la version Export de la commande. Les options logicielles ci-après ne sont pas disponibles dans la version Export, ou ne ne le sont que de manière limitée : Advanced Function Set 2 (option 9) limitée à une interpolation sur 4 axes KinematicsComp (option 52) Le constructeur de la machine adapte les fonctions de la commande à la machine, par le biais des paramètres machine. Par conséquent, ce Manuel décrit également certaines fonctions auxquelles vous n'aurez pas forcément accès sur chaque commande. Les fonctions de commande qui ne sont pas présentes sur toutes les machines sont par exemple : Etalonnage d'outils avec le TT Pour savoir de quelles fonctions dispose votre machine, adressezvous à son constructeur. HEIDENHAIN, ainsi que plusieurs constructeurs de machines, proposent des cours de programmation sur des commandes HEIDENHAIN. Il est recommandé de participer à ce type de cours si vous souhaitez vous familiariser de manière intensive avec les fonctions de la commande. Manuel d'utilisation : Toutes les fonctions de commande qui sans aucun rapport avec les cycles sont décrites dans le Manuel d'utilisation de la TNC 620. Si vous avez besoin de ce manuel, adressez-vous à HEIDENHAIN. ID du manuel utilisateur Programmation en Texte clair : 1096883-xx ID du manuel utilisateur Programmation en DIN/ISO : 1096887-xx ID du manuel utilisateur Configuration, test et exécution des programmes CN : 1263172-xx 38 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 1 Principes de base | Type de commande, logiciel et fonctions Options de logiciel La TNC 620 dispose de diverses options de logiciel qui peuvent être activées par le constructeur de votre machine. Chaque option doit être activée séparément et comporte individuellement les fonctions suivantes : Additional Axis (options 0 et 1) Axe supplémentaire Boucles d'asservissement supplémentaires 1 et 2 Advanced Function Set 1 (option 8) Fonctions étendues - Groupe 1 Usinage avec plateau circulaire : Contours sur le développé d'un cylindre Avance en mm/min Conversions de coordonnées : inclinaison du plan d'usinage Advanced Function Set 2 (option 9) Fonctions étendues - Groupe 2 avec licence d'exportation Usinage 3D : Correction d'outil 3D par vecteur normal à la surface Modification de la position de la tête pivotante avec la manivelle électronique pendant le déroulement du programme ; la position de la pointe de l'outil reste inchangée (TCPM = Tool Center Point Management) Maintien de l'outil perpendiculaire au contour Correction du rayon d'outil perpendiculaire à la direction de l'outil Déplacement manuel dans le système d'axe d'outil actif Interpolation : En ligne droite sur > 4 axes (licence d'exportation requise) Touch Probe Functions (option 17) Fonctions de palpage Cycles palpeurs : Compensation du désaxage de l'outil en mode Automatique Définir le point d'origine en Mode Manuel Définition du point d'origine en mode Automatique Mesure automatique des pièces Etalonnage automatique des outils HEIDENHAIN DNC (option 18) Communication avec les applications PC externes via les composants COM Advanced Programming Features (option 19) Fonctions de programmation étendues Programmation flexible de contours FK Programmation en texte clair HEIDENHAIN avec aide graphique pour les pièces dont la cotation des plans n'est pas conforme aux CN. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 39 1 Principes de base | Type de commande, logiciel et fonctions Advanced Programming Features (option 19) Cycles d'usinage : Perçage profond, alésage à l'alésoir, alésage à l'outil, lamage, centrage (cycles 201 - 205, 208, 240, 241) Filetages intérieurs et extérieurs (cycles 262 - 265, 267) Finition de poches et de tenons rectangulaires et circulaires (cycles 212 - 215, 251-257) Usinage ligne à ligne de surfaces planes ou gauches (cycles 230 233) Rainures droites et circulaires (cycles 210, 211, 253, 254) Motifs de points sur un cercle ou une grille (cycles 220, 221) Tracé de contour, poche de contour - y compris parallèle au contour, rainure de contour trochoïdale (cycles 20 - 25, 275) Gravure (cycle 225) Des cycles constructeurs (spécialement créés par le constructeur de la machine) peuvent être intégrés Advanced Graphic Features (option 20) Fonctions graphiques étendues Graphique de test et graphique d'usinage : Vue de dessus Représentation en trois plans Représentation 3D Advanced Function Set 3 (option 21) Fonctions étendues - Groupe 3 Correction d'outil : M120 : calcul anticipé du contour (jusqu’à 99 séquences CN) avec correction de rayon (LOOK AHEAD) Usinage 3D : M118 : superposer un déplacement avec la manivelle pendant l'exécution du programme Pallet Management (option 22) Gestion des palettes Usinage de pièces dans l'ordre de votre choix. Importation DAO (option 42) gère les fichiers DXF, STEP et IGES Transfert de contours et de motifs de points Définition conviviale du point d’origine Sélection graphique de sections de contour à partir de programmes en Texte clair Importation DAO KinematicsOpt (option 48) Sauvegarde/restauration de la cinématique active Contrôler la cinématique active Optimiser la cinématique active Optimisation de la cinématique de la machine Extended Tool Management (option 93) Gestion avancée des outils 40 basée sur Python HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 1 Principes de base | Type de commande, logiciel et fonctions Remote Desktop Manager (option 133) Windows sur un ordinateur distinct Intégration dans l’interface utilisateur de la commande Commande des ordinateurs à distance State Reporting Interface – SRI (option 137) Exportation des heures de changements d'état Exportation des programmes CN actifs Accès http à l'état de la commande Cross Talk Compensation – CTC (option 141) Acquisition d'écart de position d'ordre dynamique dû aux accélérations d'axes Compensation du TCP (Tool Center Point) Compensation de couplage d'axes Position Adaptive Control – PAC (option 142) Adaptation des paramètres d'asservissement en fonction de la position des axes dans l'espace de travail Adaptation des paramètres d'asservissement en fonction de la vitesse ou de l'accélération d'un axe Asservissement adaptatif en fonction de la position Load Adaptive Control – LAC (option 143) Calcul automatique de la masse des pièces et des forces de friction Adaptation des paramètres d'asservissement en fonction du poids réel de la pièce Asservissement adaptatif en fonction de la charge Active Chatter Control – ACC (option 145) Réduction active des vibrations Fonction entièrement automatique pour éviter les saccades pendant l'usinage Active Vibration Damping – AVD (option 146) Atténuation active des vibrations Amortissement des vibrations de la machine en vue d'améliorer la qualité de surface de la pièce Batch Process Manager (option 154) Batch Process Manager Planification de commandes de fabrication Component Monitoring (option 155) Surveillance de composants sans capteurs externes Surveillance de composants machine configurés pour éviter la surcharge Opt. Contour Milling (option 167) Cycles de contours optimisés Cycle 271 : DONNEES CONTOUR OCM Cycle 272 : EBAUCHE OCM Cycle 273 : PROF. FINITION OCM Cycle 274 : FINITION LATER. OCM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 41 1 Principes de base | Type de commande, logiciel et fonctions Niveau de développement (fonctions "upgrade") Parallèlement aux options de logiciel, les grandes étapes de développement du logiciel TNC sont gérées par ce que l'on appelle des Feature Content Levels (expression anglaise utilisée pour désigner les différents niveaux de développement). Les fonctions qui se trouvent dans un FCL ne vous sont pas mis à disposition lorsque vous recevez une mise à jour logicielle de votre commande. Lorsque vous réceptionnez une nouvelle machine, toutes les fonctions de mise à jour sont disponibles sans surcoût. Les fonctions de mise à niveau sont signalées dans le manuel par l'identifiant FCL n dans lequel n représente le numéro incrémenté correspondant au niveau de développement. L'acquisition payante des codes correspondants vous permet d'activer les fonctions FCL. Pour cela, prenez contact avec le constructeur de votre machine ou avec HEIDENHAIN. Lieu d'implantation prévu La commande correspond à la classe A selon la norme EN 55022. Elle est prévue essentiellement pour fonctionner en milieux industriels. Mentions légales Ce produit utilise un logiciel open source. Vous trouverez d'autres informations sur la commande au chapitre Mode Programmation Fonction MOD Softkey Remarques sur la LICENCE 42 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 1 Principes de base | Paramètres optionnels Paramètres optionnels HEIDENHAIN continue de développer sans cesse l'ensemble des cycles proposés. Ainsi, il se peut que le lancement d'un nouveau logiciel s'accompagne également de nouveaux paramètres Q pour les cycles. Ces nouveaux paramètres Q sont des paramètres facultatifs qui n'existaient pas alors forcément sur les versions de logiciel antérieures. Dans le cycle, ces paramètres se trouvent toujours à la fin de la définition du cycle. Pour connaître les paramètres Q en option qui ont été ajoutés à ce logiciel, reportezvous à la vue d'ensemble. "Nouvelles fonctions de cycles et fonctions de cycles modifiées dans les logiciels 81760x-07 ". Vous décidez vous-même si vous souhaitez définir les paramètres Q optionnels ou bien si vous préférez les supprimer avec la touche NO ENT. Vous pouvez également enregistrer la valeur définie par défaut. Si vous avez supprimé un paramètre Q optionnel par erreur, ou bien si vous souhaitez étendre les cycles de vos programmes CN existants après une mise à jour du logiciel, vous pouvez également insérer ultérieurement des paramètres Q optionnels. La procédure vous est décrite ci-après. Procédez comme suit : Appeler la définition du cycle Appuyez sur la touche Flèche droite jusqu'à ce que les nouveaux paramètres Q s'affichent. Mémoriser la valeur entrée par défaut Sinon, entrer une valeur Si vous souhaitez mémoriser le nouveau paramètre Q, quittez le menu en appuyant une nouvelle fois sur la touche Flèche droite ou sur END Si vous ne souhaitez pas mémoriser le nouveau paramètre Q, appuyez sur la touche NO ENT Compatibilité Les programmes CN que vous avez créés sur des commandes de contournage HEIDENHAIN plus anciennes (à partir de la TNC 150 B) peuvent être en grande partie exécutés avec la nouvelle version de logiciel de la TNC 620. Même si de nouveaux paramètres optionnels ("Paramètres optionnels") ont été ajoutés à des cycles existants, vous pouvez en principe toujours exécuter vos programmes CN comme vous en avez l'habitude. Cela est possible grâce à la valeur configurée par défaut. Si vous souhaitez exécuter en sens inverse, sur une commande antérieure, un programme CN qui a été créé sous une nouvelle version de logiciel, vous pouvez supprimer les différents paramètres Q optionnels de la définition de cycle avec la touche NO ENT. Vous obtiendrez ainsi un programme CN rétrocompatible qui convient. Quand une séquence CN comporte des éléments non valides, une séquence ERROR est créée par la commande à l'ouverture du fichier. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 43 1 Principes de base | Nouvelles fonctions de cycles et fonctions de cycles modifiées dans les logiciels 81760x-06 1.3 Nouvelles fonctions de cycles et fonctions de cycles modifiées dans les logiciels 81760x-06 Nouveau cycle 1410 PALPAGE ARETE (option 17), voir "PALPAGE D'UNE ARETE (cycle 1410, DIN/ISO : G1420, option 17)", Page 410 Nouveau cycle 1411 PALPAGE DEUX CERCLES (option 17),voir "PALPAGE DE DEUX CERCLES (cycle 1411, DIN/ISO : G1420, option 17)", Page 415 Nouveau cycle 1420 PALPAGE PLAN (option 17), voir "PALPAGE DU PLAN (cycle 1420, DIN/ISO : G1420, option 17)", Page 405 Dans le cycle 24 FINITION LATERALE, un arrondi est effectué lors de la dernière passe, par une hélice tangentielle, voir "FINITION LATERALE (cycle 24, DIN/ISO : G124, option 19)", Page 271 Le paramètre Q367 POSITION SURFACE a été ajouté au cycle 233 FRAISAGE TRANSVERSAL, voir "SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19)", Page 200 Le cycle 257 TENON CIRCULAIRE utilise également le paramètre Q207 AVANCE FRAISAGE pour l'ébauche, voir "TENON CIRCULAIRE (cycle 257, DIN/ISO : G251, option 19)", Page 190 Les cycles de palpage automatiques de 408 à 419 tiennent compte du paramètre chkTiltingAxes (n°204600) lors de la définition du point d'origine, voir "Cycles palpeurs : initialisation automatique des points d'origine", Page 445 Cycles palpeurs 41x, acquisition automatique des points d'origine : nouveau comportement des paramètres de cycles TRANSF. VAL. MESURE et Q305 NO. DANS TABLEAU, voir "Cycles palpeurs : initialisation automatique des points d'origine", Page 445 Dans le cycle 420 MESURE ANGLE, les données du cycles et du tableau de palpeurs sont prises en compte lors du prépositionnement, voir "MESURE ANGLE (cycle 420, DIN/ISO : G420, option 17)", Page 517 Le cycle 450 SAUVEG. CINEMATIQUE n'écrit pas de valeurs égales lors de la restauration, voir "SAUVEGARDE DE LA CINEMATIQUE (cycle 450, DIN/ISO : G450, option 48)", Page 584 Dans le cycle 451 MESURE CINEMATIQUE, la valeur 3 a été ajoutée au paramètre de cycle Q406 MODE, voir "MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48)", Page 587 Dans les cycles 451 MESURE CINEMATIQUE , le rayon de la bille d'étalonnage n'est surveillée que lors de la deuxième mesure, voir "MESURER LA CINEMATIQUE (cycle 451, DIN/ ISO : G451, option 48)", Page 587 44 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 1 Principes de base | Nouvelles fonctions de cycles et fonctions de cycles modifiées dans les logiciels 81760x-06 Une colonne REACTION a été ajoutée au tableau de palpeurs, voir "Tableau de palpeurs", Page 390 Le paramètre machines CfgThreadSpindle (n°113600) est disponible, voir "TARAUDAGE avec mandrin de compensation (cycle 206, DIN/ISO : G206)", Page 123 , voir "TARAUDAGE sans mandrin de compensation GS (cycle 207, DIN/ ISO : G207)", Page 126, voir "TARAUDAGE AVEC BRISECOPEAUX(cycle 209, DIN/ISO : G209, option 19)", Page 131 , voir "FILETAGE (cycle 18, DIN/ISO: G86, option 19)", Page 381 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 45 1 Principes de base | Nouvelles fonctions de cycles et fonctions de cycles modifiées dans les logiciels 81760x-07 1.4 Nouvelles fonctions de cycles et fonctions de cycles modifiées dans les logiciels 81760x-07 Nouveau cycle de motifs de points 224 MOTIF DATAMATRIX CODE qui vous permet de générer un code DataMatrix, voir "MOTIF CODE DATAMATRIX (cycle 224, DIN/ISO : G224, option 19) ", Page 247 Nouveau cycle 238 MEASURE MACHINE STATUS qui vous permet de surveiller l'usure des composants de la machine, voir "MESURE ETAT MACHINE (cycle 238, DIN/ISO: G238, option 155)", Page 376 Nouveau cycle 271 DONNEES CONTOUR OCM qui vous permet de définir des informations d'usinage pour les cycles OCM, voir "DONNEES DE CONTOUR OCM (cycle 271, DIN/ ISO : G271, option 167) ", Page 303 Nouveau cycle 272 EBAUCHE OCM qui vous permet d'usiner des poches ouvertes en tenant compte de l'angle d'attaque, voir "EBAUCHE OCM (cycle 272, DIN/ISO : G272, option 167) ", Page 305 Nouveau cycle 273 PROF. FINITION OCM qui vous permet d'usiner des poches ouvertes en tenant compte de l'angle d'attaque,voir "FINITION EN PROFONDEUR OCM (cycle 273, DIN/ISO: G273, option 167)", Page 309 Nouveau cycle 274 FINITION LATER. OCM qui vous permet d'usiner des poches ouvertes en tenant compte de l'angle d'attaque, voir "FINITION LATERALE OCM (cycle 274, DIN/ISO : G274, option 167)", Page 311 46 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 1 Principes de base | Nouvelles fonctions de cycles et fonctions de cycles modifiées dans les logiciels 81760x-07 Nouvelle softkey TABLEAU PTS ZERO en mode Exécution de programme en continu/pas-à-pas. Par ailleurs, il est possible de reprendre une valeur effective dans le tableau de points zéro, en mode Exécution de programme en continu/pas-à-pas, voir "Editer un tableau de points zéro en mode Exécution de programme en continu/pas-à-pas", Page 219 Dans les cycles 205 PERC. PROF. UNIVERS. et 241 PERC.PROF. MONOLEVRE, la valeur indiquée à Q379 POINT DE DEPART est vérifiée et comparée à Q201 PROFONDEUR. Au besoin, un message d'erreur est émis, voir "PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19)", Page 96 ou Page 107 Le cycle 225 GRAVAGE permet de graver le chemin ou le nom d'un programme CN, voir "Graver le nom et le chemin d'un programme CN", Page 370 Si une limite est programmée dans le cycle 233, le cycle FRAISAGE TRANSVERSAL prolonge le contour de la valeur du rayon d'angle dans le sens de la passe, voir "SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19)", Page 200 Le cycle 239 DEFINIR CHARGE s'affiche uniquement si le constructeur de la machine l'a défini ainsi, voir "CALCUL DE LA CHARGE (cycle 239, DIN/ISO : G239, option 143)", Page 378 L'image d'aide qui se trouve au niveau du paramètre Q224 POSITION ANGULAIRE du cycle 256 TENON RECTANGULAIRE a été modifiée, voir "TENON RECTANGULAIRE (cycle 256, DIN/ ISO : G256, option 19)", Page 185 L'image d'aide qui se trouve aux paramètres Q326 DISTANCE 1ER AXE et Q327 DISTANCE 2EME AXE du cycle 415 PT REF. INT. COIN a été modifiée, voir "POINT D'ORIGINE COIN INTERIEUR (cycle 415, DIN/ISO : G415, option 17)", Page 473 L'image d'ide qui se trouve aux cycles 481 et 31 LONGUEUR D'OUTIL, ainsi qu'aux cycles 482 et 32 RAYON D'OUTIL, à Q341 ETALONNAGE DENTS, a été modifiée, voir "Mesurer une longueur d'outil (cycle 31 ou 481, DIN/ISO : G481, option 17)", Page 624 ou Page 628 Dans les cycles 14xx, il est possible d'effectuer un prépositionnement en mode semi-automatique avec une manivelle. Il est possible d'effectuer un déplacement manuel à la hauteur de sécurité après le palpage, voir "Mode semi-automatique", Page 398 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 47 1 Principes de base | Nouvelles fonctions de cycles et fonctions de cycles modifiées dans les logiciels 81760x-07 48 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 2 Principes de base / vues d'ensemble 2 Principes de base / vues d'ensemble | Introduction 2.1 Introduction Les opérations d'usinage récurrentes qui comprennent plusieurs étapes d'usinage sont mémorisées comme cycles sur la commande. Les conversions de coordonnées et certaines fonctions spéciales sont elles aussi disponibles sous forme de cycles. La plupart des cycles utilisent des paramètres Q comme paramètres de transfert. REMARQUE Attention, risque de collision ! Certains cycles permettent de réaliser des opérations d'usinage complexes. Risque de collision ! Effectuer un test du programme avant de l’exécuter Si vous utilisez des affectations indirectes de paramètres pour des cycles dont les numéros sont supérieurs à 200 (par ex. Q210 = Q1), la modification d'un paramètre affecté (par ex. Q1) n'est pas appliquée après la Définition du cycle. Dans ce cas, définissez directement le paramètre de cycle (par ex. Q210). Si vous définissez un paramètre d'avance dans des cycles supérieurs à 200, alors vous pouvez aussi faire appel à une softkey (softkey FAUTO) plutôt qu'à une valeur numérique pour affecter l'avance définie dans la séquence TOOL CALL. Selon le cycle et la fonction du paramètre d'avance concernés, les alternatives qui vous sont proposées sont les suivantes : FMAX (avance rapide), FZ (avance par dent) et FU (avance par tour). Après une définition de cycle, une modification de l'avance FAUTO n'a aucun effet car la commande attribue en interne l'avance définie dans la séquence TOOL CALL au moment de traiter la définition du cycle. Si vous voulez supprimer un cycle avec plusieurs séquences partielles, la commande vous demande si l'ensemble du cycle doit être supprimé. 50 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 2 Principes de base / vues d'ensemble | Groupes de cycles disponibles 2.2 Groupes de cycles disponibles Résumé des cycles d'usinage Appuyer sur la touche CYCL DEF Softkey Groupe de cycles Page Cycles de perçage profond, d'alésage à l'alésoir, d'alésage à l'outil et de lamage 76 Cycles de taraudage, filetage et fraisage de filets 122 Cycles pour le fraisage de poches, tenons, rainures et pour le surfaçage 160 Cycles de conversion de coordonnées permettant de décaler, tourner, mettre en miroir, agrandir et réduire les contours de votre choix 212 Cycles SL (Subcontour-List) pour l'usinage de contours, composés de plusieurs contours partiels superposés et de cycles pour l'usinage de pourtours cylindriques et pour le fraisage en tourbillon 254 Cycles pour la réalisation de motifs de points, par ex. cercle de trous ou surface de trous, code DataMatrix 240 Cycles spéciaux pour la temporisation, l'appel de programme, l'orientation de la broche, la gravure, la tolérance, la détermination de la charge, 356 Si nécessaire, commuter vers les cycles d'usinage personnalisés du constructeur. De tels cycles d'usinage peuvent être intégrés par le constructeur de votre machine HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 51 2 Principes de base / vues d'ensemble | Groupes de cycles disponibles Résumé des cycles de palpage Appuyer sur la touche TOUCH PROBE Softkey Groupe de cycles Page Cycles pour déterminer automatiquement et compenser le désalignement d'une pièce 393 Cycles de définition automatique du point d'origine 446 Cycles pour le contrôle automatique de pièces 508 Cycles spéciaux 556 Etalonnage du palpeur 564 Cycles mesure automatique de cinématique 581 Cycles pour la mesure automatique d'outils (activés par le constructeur de machines) 616 Le cas échéant, passer aux cycles palpeurs propres aux machines ; ces cycles peuvent être intégrés par le constructeur de votre machine. 52 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage 3 Utiliser les cycles d'usinage | Travailler avec les cycles d'usinage 3.1 Travailler avec les cycles d'usinage Cycles spécifiques machine (option 19) Plusieurs machines disposent de cycles. Ces cycles peuvent être mis en œuvre sur la commande par le constructeur de votre machine, en plus des cycles HEIDENHAIN. Vous disposez pour cela d'une plage de numéros de cycles distincte : Cycles 300 à 399 Cycles spécifiques à la machine à définir avec la touche CYCL DEF. Cycles 500 à 599 Cycles palpeurs spécifiques à la machine à définir avec la touche TOUCH PROBE. Reportez-vous pour cela à la description des fonctions dans le manuel de votre machine. Il arrive aussi que les cycles spécifiques aux machines utilisent des paramètres de transfert déjà utilisés par les cycles standards HEIDENHAIN. Pour éviter tout problème d'écrasement de paramètres de transfert qui sont utilisés à plusieurs reprises alors que des cycles DEF actifs (cycles que la commande exécute automatiquement à la définition du cycle) sont utilisés en même temps que des cycles CALL actifs (cycles qui nécessitent d'être appelés pour être exécutés), Eviter les problèmes liés à l'écrasement de paramètres de transfert qui sont utilisés plusieurs fois. Procédez comme suit : Programmer les cycles actifs avec DEF avant les cycles actifs avec CALL Entre la définition d'un cycle actif avec CALL et l'appel de cycle correspondant, ne programmer un cycle actif avec DEF qu'une fois que vous êtes certain qu'il n'y a pas d'interaction des paramètres de transfert entre ces deux cycles. Informations complémentaires : "Appeler des cycles", Page 56 54 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage | Travailler avec les cycles d'usinage Définir un cycle avec les softkeys Procédez comme suit : Appuyer sur la touche CYCL DEF La barre de softkeys affiche les différents groupes de cycles. Sélectionner le groupe de cycles, par ex. les cycles de perçage Sélectionner le cycle, par ex. FRAISAGE DE FILETS La commande ouvre un dialogue et demande d'entrer toutes les valeurs de saisie. La commande affiche en même temps un graphique sur la moitié droite de l'écran. Le paramètre à renseigner apparaît en clair. Renseigner les paramètres requis Valider chaque saisie avec la touche ENT La CN quitte le dialogue une fois toutes les données requises programmées. Définir le cycle avec la fonction GOTO Procédez comme suit : Appuyer sur la touche CYCL DEF La barre de softkeys affiche les différents groupes de cycles. Appuyer sur la touche GOTO La commande affiche la vue d'ensemble des cycles dans une fenêtre distincte. Utiliser les touches fléchées pour sélectionner le cycle de votre choix Sinon, indiquer le numéro de cycle Dans tous les cas, confirmer avec la touche ENT La commande ouvre ensuite le dialogue du cycle, comme décrit précédemment. Exemple 7 CYCL DEF 200 PERCAGE Q200=2 ;DISTANCE D'APPROCHE Q201=3 ;PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q202=5 ;PROFONDEUR DE PASSE Q210=0 ;TEMPO. EN HAUT Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q211=0.25 ;TEMPO. AU FOND Q395=0 ;REFERENCE PROFONDEUR HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 55 3 Utiliser les cycles d'usinage | Travailler avec les cycles d'usinage Appeler des cycles Conditions requises Dans tous les cas, avant un appel de cycle, il vous faut programmer les éléments suivants : BLK FORM pour la représentation graphique (nécessaire uniquement pour le test graphique) Appel d'outil Sens de rotation de la broche (fonction auxiliaire M3/M4) Définition de cycle (CYCL DEF) Tenez compte des remarques complémentaires indiquées lors de la description de chaque cycle. Les cycles suivants sont actifs dans le programme CN dès lors qu'ils ont été définis. Ils n'ont pas besoin d'être appelés et ne doivent pas être appelés : Cycles 220 de motifs de points sur un cercle ou 221 de motifs de points sur une grille Cycle SL 14 CONTOUR Cycle SL 20 DONNEES DU CONTOUR Cycle 32 TOLERANCE Cycles de conversion de coordonnées Cycle 9 TEMPORISATION tous les cycles palpeurs Vous pouvez appeler tous les autres cycles avec les fonctions décrites ci-après. Appel de cycle avec CYCL CALL La fonction CYCL CALL appelle une seule fois le dernier cycle d'usinage défini. Le point initial du cycle correspond à la dernière position programmée avant la séquence CYCL CALL. Procédez comme suit : Appuyer sur la touche CYCL CALL Appuyer sur la softkey CYCL CALL M. Au besoin, programmer la fonction auxiliaire M (par ex. M3 pour activer la broche) Quitter le dialogue avec la touche END Appel de cycle avec CYCL CALL PAT La fonction CYCL CALL PAT appelle le dernier cycle d'usinage défini à toutes les positions que vous avez défini dans une définition de motif PATTERN DEF ou dans un tableau de points. Informations complémentaires : "Motif d'usinage PATTERN DEF", Page 64 Informations complémentaires : "Tableaux de points", Page 71 56 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage | Travailler avec les cycles d'usinage Appel de cycle avec CYCL CALL POS La fonction CYCL CALL POS appelle une seule fois le dernier cycle d'usinage défini. Le point initial du cycle correspond à la position définie dans la séquence CYCL CALL POS. La commande approche la position indiquée dans la séquence CYCL CALL POS, selon la logique de positionnement définie : Si la position actuelle de l'outil sur l'axe d'outil est supérieure à l'arête supérieure de la pièce (Q203), la CN commence par positionner l'outil à la position programmée dans le plan d'usinage, puis sur l'axe d'outil. Si la position actuelle de l'outil dans l'axe d'outil se trouve en dessous de l'arête supérieure de la pièce (Q203), la CN commence par positionner l'outil à la hauteur de sécurité, avant de l'amener à la position programmée dans le plan d'usinage. Trois axes de coordonnées doivent toujours être programmés dans la séquence CYCL CALL POS. Vous pouvez modifier la position initiale de manière simple avec la coordonnée dans l'axe d'outil. Elle agit comme un décalage supplémentaire du point zéro. L'avance définie dans la séquence CYCL CALL POS ne vaut que pour l'approche de la position de départ programmée dans cette séquence CN. En principe, la commande approche la position définie dans la séquence CYCL CALL POS avec une correction de rayon inactive (R0). Si vous appelez un cycle avec CYCL CALL POS, en définissant une position de départ (par ex. le cycle 212), alors la position définie dans le cycle agit comme un décalage supplémentaire sur la position définie dans la séquence CYCL CALL POS. Dans le cycle, programmez par conséquent toujours 0 pour la position initiale. Appel de cycle avec M99/M89 La fonction à effet non modal M99 appelle une seule fois le dernier cycle d'usinage défini. La fonction M99 peut être programmée à la fin d'une séquence de positionnement. L'outil est alors amené à cette position, puis la TNC appelle le dernier cycle d'usinage défini. S'il faut que la commande exécute automatiquement le cycle après chaque séquence de positionnement, programmez le premier appel de cycle avec M89. Pour annuler l'effet de la fonction M89, procédez comme suit : Programmer M99 dans la séquence de positionnement La CN approche le dernier point de départ. Sinon, définir un nouveau cycle d’usinage avec CYCL DEF La CN ne supporte pas M89 en combinaison avec la programmation FK ! HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 57 3 Utiliser les cycles d'usinage | Travailler avec les cycles d'usinage Appel de cycle avec SEL CYCLE SEL CYCLE vous permet d'utiliser le programme CN de votre choix comme cycle d'usinage. Procédez comme suit : Appuyer sur la touche PGM CALL Appuyer sur la softkey SELECTIONNER CYCLE Appuyer sur la softkey SELECTIONNER FICHIER Sélectionner un programme CN Sélectionner la softkey CYCL CALL M, CYCL CALL PAT ou CYCL CALL POS Sinon, programmer M99 Si vous exécutez un programme CN sélectionné avec SEL CYCLE, il sera exécuté pas à pas, sans interruption séquence CN. Il apparaît aussi sous forme de séquence CN en mode Exécution de programme en continu. CYCL CALL PAT et CYCL CALL POS utilisent une logique de positionnement avant que le cycle ne soit exécuté. En ce qui concerne la logique de positionnement, SEL CYCLE et le cycle 12 PGM CALL se comportent de la même manière : pour le motif de points, le calcul de la hauteur de sécurité à aborder se fait à partir de la valeur de la position Z la plus élevée au démarrage du motif et de toutes les positions Z du motif de points. Avec CYCL CALL POS, il n’y a pas de pré-positionnement dans le sens de l'axe d’outil. Vous devez alors vous-même programmer un pré-positionnement au sein du fichier appelé. 58 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage | Paramètres de cycles par défaut 3.2 Paramètres de cycles par défaut Résumé Tous les cycles 20 et 25 avec un numéro supérieur à 200 utilisent toujours les mêmes paramètres de cycles, comme par ex. la distance d'approche Q200 qu'il vous faut adapter à chaque définition de cycle. La fonction GLOBAL DEF vous permet de définir ces paramètres de cycles de manière centralisée au début du programme. Ils agissent alors de manière globale dans tous les cycles d’usinage qui sont utilisés dans le programme CN. Chaque cycle d'usinage renvoie alors à la valeur définie en début de programme. Les fonctions GLOBAL DEF suivantes sont disponibles : Softkey Motifs d'usinage Page GLOBAL DEF GENERAL Définition de paramètres de cycles à effet général 62 GLOBAL DEF PERCAGE Définition de paramètres spéciaux pour les cycles de perçage 62 GLOBAL DEF FRAISAGE DE POCHES Définition de paramètres spéciaux pour les cycles de fraisage de poches 62 GLOBAL DEF FRAISAGE DE CONTOURS Définition de paramètres spéciaux pour le fraisage de contours 63 GLOBAL DEF POSITIONNEMENT Définition du mode opératoire avec CYCL CALL PAT 63 GLOBAL DEF PALPAGE Définition de paramètres spéciaux pour les cycles de palpage 63 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 59 3 Utiliser les cycles d'usinage | Paramètres de cycles par défaut Introduire GLOBAL DEF Procédez comme suit : Appuyer sur la touche PROGRAMMER Appuyer sur la touche SPEC FCT Appuyer sur la softkey DEFIN. PGM PAR DEFAUT Appuyer sur la softkey GLOBAL DEF Sélectionner la fonction GLOBAL-DEF de votre choix, par ex. en appuyant sur la softkey GLOBAL DEF GENERAL Renseigner les définitions requises Valider chaque fois avec la touche ENT 60 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage | Paramètres de cycles par défaut Utiliser les données GLOBAL DEF Si vous avez programmé des fonctions GLOBAL DEF en début de programme, vous pouvez ensuite faire référence à ces valeurs à effet global quand vous définissez un cycle d'usinage de votre choix. Procédez comme suit : Appuyer sur la touche PROGRAMMER Appuyer sur la touche CYCL DEF Sélectionner le groupe de cycles souhaité, p. ex. cycles de perçage Sélectionner le cycle souhaité, par ex. PERCAGE. S’il existe pour cela un paramètre global, la commande affiche la softkey INTIALISE VALEUR STANDARD. Appuyer sur la softkey INTIALISE VALEUR STANDARD La CN inscrit le mot PREDEF (autrement dit, "prédéfini") dans la définition du cycle. La liaison est ainsi établie avec le paramètre GLOBAL DEF que vous aviez défini en début de programme. REMARQUE Attention, risque de collision ! Vous modifiez ultérieurement les paramètres de programme avec GLOBAL DEF, ces modifications auront des répercussion sur l'ensemble du programme CN. Le processus d’usinage peut s’en trouver considérablement modifié. Utiliser GLOBAL DEF à bon escient. Effectuer un test du programme avant de l’exécuter Programmer une valeur fixe dans les cycles d’usinage ; GLOBAL DEF ne modifiera alors pas les valeurs. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 61 3 Utiliser les cycles d'usinage | Paramètres de cycles par défaut Données d'ordre général à effet global DISTANCE D'APPROCHE : distance entre la face frontale de l'outil et la surface de la pièce lors de l'approche automatique de la position de départ du cycle sur l'axe d'outil SAUT DE BRIDE : position à laquelle la CN positionne l'outil à la fin d'une étape d'usinage (la position d'usinage suivante est approchée à cette hauteur, dans le plan d'usinage) POSITIONNEMENT F : avance avec laquelle la CN déplace l'outil dans un cycle RETRAIT F : avance avec laquelle la CN ramène l'outil en position Paramètres valables pour tous les cycles d'usinage 2xx. Données à effet global pour les cycles de perçage RETRAIT BRISE-COPEAUX : valeur de retrait de l'outil par la CN lors du brise-copeaux TEMPO. AU FOND : temps en secondes pendant lequel l'outil reste au fond du trou TEMPO. EN HAUT : temps en secondes pendant lequel l'outil reste à la distance d'approche Ces paramètres sont valables pour les cycles de perçage, de taraudage et de fraisage de filets 200 à 209, 240, 241 et 262 à 267. Données à effet global pour les cycles de fraisage de poches 25x FACTEUR DE RECOUVREMENT : rayon d'outil x facteur de recouvrement permet d'obtenir la passe latérale MODE FRAISAGE : en avalant/en opposition TYPE DE PLONGEE : plongée hélicoïdale, pendulaire ou verticale dans la matière Paramètres valables pour les cycles de fraisage 251 à 257 62 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage | Paramètres de cycles par défaut Données à effet global pour les opérations de fraisage avec cycles de contours DISTANCE D'APPROCHE : distance entre la face frontale de l'outil et la surface de la pièce lors de l'approche automatique de la position de départ du cycle sur l'axe d'outil HAUTEUR DE SECURITE : hauteur absolue à laquelle il n'y a aucun risque de collision avec la pièce (pour les positionnements intermédiaires et les retraits en fin de cycle) FACTEUR DE RECOUVREMENT : rayon d'outil x facteur de recouvrement permet d'obtenir la passe latérale MODE FRAISAGE : en avalant/en opposition Paramètres valables pour les cycles SL 20, 22, 23, 24 et 25 Données à effet global pour le comportement de positionnement COMPORTEMENT DE POSITIONNEMENT : retrait au saut de bride ou à la position de départ de l'Unit, le long de l'axe d'outil, à la fin d'un étape d'usinage Les paramètres sont valables pour tous les cycles d'usinage quand vous appelez le cycle concerné avec la fonction CYCL CALL PAT. Données à effet global pour les fonctions de palpage DISTANCE D'APPROCHE : distance entre la tige de palpage et la surface de la pièce lors de l'approche automatique de la position de palpage HAUTEUR DE SECURITE : coordonnée à laquelle la CN positionne le palpeur entre les points de mesure, sur l'axe du palpeur, si l'option DEPLAC. HAUT. SECU. est activée. DEPLAC. HAUT. SECU. : vous devez sélectionner si la CN doit amener l'outil à la distance d'approche ou à la hauteur de sécurité définie entre les points de mesure Paramètres valables pour tous les cycles palpeurs 4xx HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 63 3 Utiliser les cycles d'usinage | Motif d'usinage PATTERN DEF 3.3 Motif d'usinage PATTERN DEF Application La fonction PATTERN DEF permet de définir de manière simple des motifs d'usinage réguliers que vous pouvez appeler avec la fonction CYCL CALL PAT. Comme pendant la définition des cycles, des figures d'aide sont également disponibles pendant la définition de motifs, pour illustrer à quoi correspondent les différents paramètres à renseigner. REMARQUE Attention, risque de collision ! La fonction PATTERN DEF permet de calculer les coordonnées dans les axes X et Y. Pour tous les axes d’outil, excepté l’axe Z, il existe un risque de collision pendant l'usinage qui suit ! Utiliser PATTERN DEF exclusivement avec l’axe d'outil Z Motifs d'usinage disponibles : Softkey 64 Motifs d'usinage Page POINT Définition d'au maximum 9 positions d'usinage au choix 66 RANGEE Définition d'une seule rangée, horizontale ou orientée 66 MOTIF Définition d'un seul motif, horizontal, orienté ou déformé 67 CADRE Définition d'un seul cadre, horizontal, orienté ou déformé 68 CERCLE Définition d'un cercle entier 69 Disque gradué Définition d'un disque gradué 70 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage | Motif d'usinage PATTERN DEF Programmer PATTERN DEF Procédez comme suit : Appuyer sur la touche PROGRAMMER Appuyer sur la touche SPEC FCT Appuyer sur la softkey USINAGE CONTOUR/POINT Appuyer sur la softkey PATTERN DEF Sélectionner le motif d'usinage de votre choix, par ex. en appuyant sur la softkey "Une rangée" Renseigner les définitions requises Valider chaque fois avec la touche ENT Utiliser PATTERN DEF Dès lors que vous avez défini le motif, vous pouvez l'appeler avec la fonction CYCL CALL PAT. Informations complémentaires : "Appeler des cycles", Page 56 La CN exécute alors le dernier cycle d'usinage que vous avez programmé pour le motif d'usinage défini. Un motif d'usinage reste actif jusqu'à ce que vous en définissiez un nouveau ou bien jusqu'à ce que vous sélectionniez un tableau de points avec la fonction SEL PATTERN. Vous pouvez utiliser la fonction d'amorce de séquence pour sélectionner le point de votre choix au niveau duquel vous pouvez débuter ou poursuivre l'usinage Plus d'informations : manuel utilisateur Configuration, test et exécution de programme Entre les deux points de départ, la commande retire l'outil à la hauteur de sécurité. La commande utilise comme hauteur de sécurité soit la coordonnée de l'axe de broche lors de l'appel de cycle, soit la valeur du paramètre de cycle Q204, en fonction de la valeur la plus élevée. Si la surface des coordonnées de PATTERN DEF est supérieure à celle du cycle, la distance d'approche et le saut de bride seront calculés par rapport à la surface de coordonnées de PATTERN DEF. Avant CYCL CALL PAT, vous pouvez utiliser la fonction GLOBAL DEF 125 (qui se trouve sous SPEC FCT/DEFIN. PGM PAR DÉFAUT) avec Q352=1. Entre les perçages, la commande positionne alors toujours l'outil au saut de bride qui a été défini dans le cycle. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 65 3 Utiliser les cycles d'usinage | Motif d'usinage PATTERN DEF Définir des positions d'usinage Vous pouvez introduire jusqu'à 9 positions d'usinage. Valider chaque position introduite avec la touche ENT. POS1 doit être programmé avec des coordonnées absolues. POS2 à POS9 peuvent être programmés en absolu et/ou en incrémental. Si vous définissez une Surface pièce en Z différente de 0, cette valeur agit en plus de la valeur du paramètre Coord. surface pièce Q203 qui est défini dans le cycle d'usinage. Exemple 10 L Z+100 R0 FMAX 11 PATTERN DEF POS1 (X+25 Y+33,5 Z+0) POS2 (X+15 IY+6,5 Z+0) POS1: Coord. X position d'usinage (en absolu) : entrer la coordonnée X POS1: Coord. Y position d'usinage (absolu) : entrer la coordonnée Y POS1: Coordonnée surface de la pièce (en absolu) : entrer la coordonnée Z à laquelle commence l'usinage POS2: Coord. X position d'usinage (absolu ou incrémental) : entrer la coordonnée X POS2: Coord. Y position d'usinage (en absolu ou en incrémental) : entrer la coordonnée Y POS2: Coordonnée surface de la pièce (absolu ou incrémental) : entrer la coordonnée Z Définir une seule rangée Si vous définissez une Surface pièce en Z différente de 0, cette valeur agit en plus de la valeur du paramètre Coord. surface pièce Q203 qui est défini dans le cycle d'usinage. Point de départ X (en absolu) : coordonnée du point de départ de la rangée sur l'axe X Point de départ Y (en absolu) : coordonnée du point de départ de la rangée sur l'axe Y Distance positions d'usinage (en incrémental) : distance entre les positions d'usinage. Valeur positive ou négative possible Nombre d'usinages : nombre de positions d'usinage Pivot de l'ensemble du motif (absolu) : angle de rotation autour du point de départ programmé. Axe de référence : axe principal du plan d'usinage actif (par ex. X avec l'axe d'outil Z). Valeur positive ou négative possible Coordonnée surface de la pièce (en absolu) : entrer la coordonnée Z à laquelle débute l'usinage 66 Exemple 10 L Z+100 R0 FMAX 11 PATTERN DEF ROW1 (X+25 Y+33,5 D+8 NUM5 ROT+0 Z +0) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage | Motif d'usinage PATTERN DEF Définir un motif Si vous définissez une Surface pièce en Z différente de 0, cette valeur agit en plus de la valeur du paramètre Coord. surface pièce Q203 qui est défini dans le cycle d'usinage. Les paramètres Pivot axe principal et Pivot axe auxiliaire agissent en plus du Pivot de l'ensemble du motif exécuté au préalable. Exemple 10 L Z+100 R0 FMAX 11 PATTERN DEF PAT1 (X+25 Y+33,5 DX+8 DY+10 NUMX5 NUMY4 ROT+0 ROTX+0 ROTY+0 Z+0) Point de départ X (en absolu) : coordonnée du point de départ du motif sur l'axe X Point de départ Y (en absolu) : coordonnée du point de départ du motif sur l'axe Y Distance positions d'usinage X (en incrémental) : distance entre les positions d'usinage dans le sens X. Valeur positive ou négative possible Distance positions d'usinage Y (en incrémental) : distance entre les positions d'usinage dans le sens Y. Valeur positive ou négative possible Nombre de colonnes : nombre total de colonnes du motif Nombre de lignes : nombre total de lignes du motif Pivot de l'ensemble du motif (en absolu) : angle de rotation selon lequel l'ensemble du motif doit tourner autour du point de départ programmé. Axe de référence : axe principal du plan d'usinage actif (par ex. X avec l'axe d'outil Z). Valeur positive ou négative possible Pivot axe principal : angle de rotation autour duquel seul l'axe principal du plan d'usinage est déformé par rapport au point de départ défini. Valeur positive ou négative possible Pivot axe auxiliaire : angle de rotation autour duquel seul l'axe auxiliaire du plan d'usinage est déformé par rapport au point de départ défini. Valeur positive ou négative possible Coordonnée surface de la pièce (absolu) : entrer la coordonnée Z à laquelle l'usinage doit commencer. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 67 3 Utiliser les cycles d'usinage | Motif d'usinage PATTERN DEF Définir un cadre Si vous définissez une Surface pièce en Z différente de 0, cette valeur agit en plus de la valeur du paramètre Coord. surface pièce Q203 qui est défini dans le cycle d'usinage. Les paramètres Pivot axe principal et Pivot axe auxiliaire agissent en plus du Pivot de l'ensemble du motif exécuté au préalable. Exemple 10 L Z+100 R0 FMAX 11 PATTERN DEF FRAME1 (X+25 Y+33,5 DX+8 DY+10 NUMX5 NUMY4 ROT+0 ROTX+0 ROTY+0 Z +0) Point de départ X (en absolu) : coordonnée du point de départ du cadre sur l'axe X Point de départ Y (en absolu) : coordonnée du point de départ du cadre sur l'axe Y Distance positions d'usinage X (en incrémental) : distance entre les positions d'usinage dans le sens X. Valeur positive ou négative possible Distance positions d'usinage Y (en incrémental) : distance entre les positions d'usinage dans le sens Y. Valeur positive ou négative possible Nombre de colonnes : nombre total de colonnes du motif Nombre de lignes : nombre total de lignes du motif Pivot de l'ensemble du motif (en absolu) : angle de rotation selon lequel l'ensemble du motif doit tourner autour du point de départ programmé. Axe de référence : axe principal du plan d'usinage actif (par ex. X avec l'axe d'outil Z). Valeur positive ou négative possible Pivot axe principal : angle de rotation autour duquel seul l'axe principal du plan d'usinage est déformé par rapport au point de départ défini. Valeur positive ou négative possible Pivot axe auxiliaire : angle de rotation autour duquel seul l'axe auxiliaire du plan d'usinage est déformé par rapport au point de départ défini. Valeur positive ou négative possible Coordonnée surface de la pièce (en absolu) : entrer la coordonnée Z à laquelle débute l'usinage 68 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage | Motif d'usinage PATTERN DEF Définir un cercle entier Si vous définissez une Surface pièce en Z différente de 0, cette valeur agit en plus de la valeur du paramètre Coord. surface pièce Q203 qui est défini dans le cycle d'usinage. Centre du cercle de trous X (en absolu) : coordonnée du centre du cercle sur l'axe X Centre du cercle de trous Y (en absolu) : coordonnée du centre du cercle sur l'axe Y Diamètre du cercle de trous : diamètre du cercle de trous Angle initial : angle polaire de la première position d'usinage. Axe de référence : axe principal du plan d'usinage actif (par ex. X avec l'axe d'outil Z). Valeur positive ou négative possible Nombre d'usinages : nombre total de positions d'usinage sur le cercle Coordonnée surface de la pièce (en absolu) : entrer la coordonnée Z à laquelle débute l'usinage HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 10 L Z+100 R0 FMAX 11 PATTERN DEF CIRC1 (X+25 Y+33 D80 START+45 NUM8 Z +0) 69 3 Utiliser les cycles d'usinage | Motif d'usinage PATTERN DEF Définir un segment de de cercle Si vous définissez une Surface pièce en Z différente de 0, cette valeur agit en plus de la valeur du paramètre Coord. surface pièce Q203 qui est défini dans le cycle d'usinage. Centre du cercle de trous X (en absolu) : coordonnée du centre du cercle sur l'axe X Centre du cercle de trous Y (en absolu) : coordonnée du centre du cercle sur l'axe Y Diamètre du cercle de trous : diamètre du cercle de trous Angle initial : angle polaire de la première position d'usinage. Axe de référence : axe principal du plan d'usinage actif (par ex. X avec l'axe d'outil Z). Valeur positive ou négative possible Incrément angulaire/Angle final : angle polaire incrémental entre deux positions d'usinage. Valeur positive ou négative possible Sinon, il est possible de renseigner l'angle final (commutation par softkey) Nombre d'usinages : nombre total de positions d'usinage sur le cercle Coordonnée surface de la pièce (en absolu) : entrer la coordonnée Z à laquelle débute l'usinage 70 Exemple 10 L Z+100 R0 FMAX 11 PATTERN DEF PITCHCIRC1 (X+25 Y+33 D80 START+45 STEP30 NUM8 Z+0) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage | Tableaux de points 3.4 Tableaux de points Description Si vous souhaitez exécuter un ou plusieurs cycles les uns à la suite des autres sur un motif de points irrégulier, il vous faudra créer des tableaux de points. Si vous utilisez des cycles de perçage, les coordonnées du plan d'usinage dans le tableau de points correspondent aux coordonnées des centres des trous. Si vous utilisez des cycles de fraisage, les coordonnées du plan d'usinage dans le tableau de points correspondent au coordonnées du point de départ du cycle concerné (par ex. coordonnées du centre d'une poche circulaire). Les coordonnées de l'axe de broche correspondent à la coordonnée de la surface de la pièce. Programmer un tableau de points Procédez comme suit : Appuyer sur la touche PROGRAMMER Appuyer sur la touche PGM MGT La commande ouvre le gestionnaire de fichiers. Sélectionner le répertoire dans lequel vous allez créer le nouveau fichier Indiquer un nom et un type de fichier (.PNT) Valider avec la touche ENT Appuyer sur MM ou INCH. La CN passe dans la fenêtre de programme et affiche un tableau de points vide. Insérer une nouvelle ligne avec la softkey INSERER LIGNE Entrer les coordonnées du lieu de l'usinage de votre choix Répéter la procédure jusqu'à ce que toutes les coordonnées souhaitées soient introduites. Le nom du tableau de points doit commencer par une lettre si vous comptez l'utiliser en SQL. La softkey TRIER/ CACHER COLONNES vous permet de définir les coordonnées que vous souhaitez renseigner dans le tableau de points. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 71 3 Utiliser les cycles d'usinage | Tableaux de points Ignorer certains points pour l'usinage. Dans le tableau de points, la colonne FADEvous permet d'identifier le point défini sur une ligne donnée de manière à ce qu'il ne soit pas usiné. Procédez comme suit : Utiliser les TOUCHES FLECHEES pour sélectionner le point de votre choix dans le tableau Sélectionner la colonne FADE Appuyer sur la touche ENT pour activer l'option de masquage NO ENT Appuyer sur la touche NO ENT pour désactiver l'option de masquage Sélectionner le tableau de points dans le programme CN En mode Programmation, sélectionner le programme CN pour lequel vous avez activé le tableau de points. Procédez comme suit : Appuyer sur la touche PGM CALL Appuyer sur la softkey SELECTIONNER TABLEAU POINTS Appuyer sur la softkey SELECTION FICHIER Sélectionner un tableau de points Appuyer sur la softkey OK Si le tableau de points n'est pas enregistré dans le même répertoire que le programme CN, il vous faudra entrer le nom du chemin complet. Exemple 7 SEL PATTERN "TNC:\DIRKT5\NUST35.PNT" 72 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 3 Utiliser les cycles d'usinage | Tableaux de points Appeler le cycle en lien avec les tableaux de points Si la commande appelle le dernier cycle d'usinage défini aux points qui sont définis dans le tableau de points, programmez l'appel de cycle avec CYCL CALL PAT : Procédez comme suit : Appuyer sur la touche CYCL CALL Appuyer sur la softkey CYCL CALL PAT Entrer l'avance La CN se déplace alors entre les points avec cette avance. Sinon, appuyer sur la softkey F MAX Si aucune valeur : le déplacement se fait avec l'avance programmée en dernier. Au besoin, programmer une fonction auxiliaire M Valider avec la touche FIN Entre les deux points de départ, la commande retire l'outil à la hauteur de sécurité. La commande utilise comme hauteur de sécurité soit la coordonnée de l'axe de broche lors de l'appel de cycle, soit la valeur du paramètre de cycle Q204, en fonction de la valeur la plus élevée. Avant CYCL CALL PAT, vous pouvez utiliser la fonction GLOBAL DEF 125 (qui se trouve sous SPEC FCT/DEFIN. PGM PAR DÉFAUT) avec Q352=1. Entre les perçages, la commande positionne alors toujours l'outil au saut de bride qui a été défini dans le cycle. Si vous voulez effectuer un pré-positionnement avec une avance réduite sur l'axe de broche, utilisez la fonction auxiliaire M103. Mode d'action du tableau de points avec les cycles SL et le cycle 12 La commande interprète les points comme décalage du point zéro. Mode d'action du tableau avec les cycles 200 à 208, 262 à 267 La commande interprète les points du plan d'usinage comme coordonnées du centre du perçage. Si vous souhaitez utiliser la coordonnée définie sur l'axe de broche comme coordonnée du point de départ, il vous faut définir l'arête supérieure de la pièce (Q203) avec 0. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 73 3 Utiliser les cycles d'usinage | Tableaux de points Mode d'action du tableau de points avec les cycles 251 à 254 La commande interprète les points du plan d'usinage comme coordonnées du point de départ du cycle. Si vous souhaitez utiliser la coordonnée définie sur l'axe de broche comme coordonnée du point de départ, il vous faut définir l'arête supérieure de la pièce (Q203) avec 0. REMARQUE Attention, risque de collision ! Dans le tableau de points, si vous programmez pour le cycle d'usinage une hauteur de sécurité pour certains points, la commande ignorera le saut de bride pour tous ces points ! Programmez GLOBAL DEF 125 POSITIONNER au préalable et la commande ne tiendra compte de la hauteur de sécurité du tableau de points que pour le point concerné. Avec CYCL CALL PAT, la commande exécute le tableau de points que vous avez défini en dernier, même si vous avez défini le tableau de points dans un programme CN défini avec CALL PGM. 74 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage 4 Cycles d'usinage : perçage | Principes de base 4.1 Principes de base Résumé La commande propose les cycles suivants pour effectuer une grande variété d'opérations de perçage : Softkey 76 Cycle Page 240 CENTRAGE Avec pré-positionnement automatique, saut de bride, saisie (au choix) du diamètre de centrage/de la profondeur de centrage 115 200 PERCAGE Avec prépositionnement automatique, saut de bride 77 201 ALESAGE A L'ALESOIR Avec pré-positionnement automatique, saut de bride 80 202 ALESAGE A L'OUTIL Avec prépositionnement automatique, saut de bride 82 203 PERCAGE UNIVERSEL Avec pré-positionnement automatique, saut de bride, brise copeaux, dégressivité 86 204 LAMAGE EN TIRANT Avec prépositionnement automatique, saut de bride 92 205 PERCAGE PROFOND UNIVERSEL Avec pré-positionnement automatique, saut de bride, brise copeaux, distance de sécurité 96 208 FRAISAGE DE TROUS Avec prépositionnement automatique, saut de bride 104 241 PERCAGE PROFOND MONOLEVRE Avec pré-positionnement automatique au point de départ profond et définition de la vitesse de rotation et de l'arrosage 107 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE (cycle 200, DIN/ISO : G200) 4.2 PERCAGE (cycle 200, DIN/ISO : G200) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche, au-dessus de la surface de la pièce, sur l'axe de la broche. 2 L'outil procède au perçage avec l'avance F programmée jusqu'à la première profondeur de passe. 3 La commande ramène l'outil à la distance d'approche avec FMAX, exécute une temporisation (si programmée), puis repositionne l'outil à la distance d'approche, au-dessus de la première profondeur de passe, avec FMAX. 4 L'outil perce ensuite une autre profondeur de passe, avec l'avance F programmée. 5 La commande répète cette procédure (2 à 4) jusqu'à ce que la profondeur de perçage programmée soit atteinte (la temporisation du paramètre Q211 s'applique pour chaque passe). 6 Pour terminer, l'outil part du fond du trou avec l'avance FMAX pour atteindre la distance d'approche ou le saut de bride. Le saut de bride Q204 n'agit que si la valeur programmée est supérieure à celle de la distance d'approche Q200. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 77 4 Cycles d'usinage : perçage | PERCAGE (cycle 200, DIN/ISO : G200) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécute pas le cycle. Si vous souhaitez percer sans brise-copeaux, définissez au paramètre Q202 une valeur qui soit plus élevée que la profondeur définie au paramètre Q201 plus la profondeur calculée à partir de l'angle de pointe. Vous pouvez même définir une valeur nettement plus élevée. 78 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE (cycle 200, DIN/ISO : G200) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce ; entrer une valeur positive. Plage de programmation : 0 à 99999,9999 Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du trou. Plage de programmation : -99999,9999 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors du perçage en mm/ min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU Q202 Profondeur de passe? (en incrémental) : la cote de chaque passe d'outil Plage de programmation : 0 à 99999,9999 La profondeur peut être un multiple de la profondeur de passe. La commande amène l'outil à la profondeur indiquée en une seule fois si : la profondeur de passe est égale à la profondeur la profondeur de passe est supérieure à la profondeur Q210 Temporisation en haut? : temps en secondes pendant lequel l'outil temporise à la distance d'approche une fois que la commande a sorti l'outil du trou pour dégager les copeaux. Plage de saisie 0 à 3600,0000 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q211 Temporisation au fond? : temps en secondes pendant lequel l'outil reste au fond du trou. Plage de programmation : 0 à 3600,0000 Q395 Référence au diamètre (0/1) ? : vous choisissez ici si la profondeur indiquée doit se référer à la pointe de l'outil ou à la partie cylindrique de l'outil. Si la commande doit tenir compte de la profondeur par rapport à la partie cylindrique de l'outil, vous devez définir l'angle de la pointe de l'outil dans la colonne T-ANGLE du tableau d'outils TOOL.T. 0 = profondeur par rapport à la pointe de l'outil 1 = profondeur par rapport à la partie cylindrique de l'outil HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 11 CYCL DEF 200 PERCAGE Q200=2 ;DISTANCE D'APPROCHE Q201=-15 ;PROFONDEUR Q206=250 ;AVANCE PLONGEE PROF.AVANCE PLONGÉE PROF. Q202=5 ;PROFONDEUR DE PASSE Q210=0 ;TEMPO. EN HAUT Q203=+20 ;COORD. SURFACE PIECE Q204=100 ;SAUT DE BRIDE Q211=0.1 ;TEMPO. AU FOND Q395=0 ;REFERENCE PROFONDEUR 12 L X+30 Y+20 FMAX M3 13 CYCL CALL 14 L X+80 Y+50 FMAX M99 79 4 Cycles d'usinage : perçage | ALESAGE A L'ALESOIR (cycle 201,DIN/ISO : G201, option 19) 4.3 ALESAGE A L'ALESOIR (cycle 201,DIN/ISO : G201, option 19) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche indiquée, au-dessus de la surface de la pièce, sur l'axe de la broche. 2 Selon l'avance F introduite, l'outil alèse jusqu'à la profondeur programmée. 3 Au fond du trou, l'outil exécute une temporisation (si celle-ci a été programmée). 4 Pour terminer, la commande ramène l'outil soit à la distance d'approche soit au saut de bride avec l'avance F. Le saut de bride Q204 n'agit que si la valeur programmée est supérieure à celle de la distance d'approche Q200. Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécute pas le cycle. 80 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | ALESAGE A L'ALESOIR (cycle 201,DIN/ISO : G201, option 19) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du trou. Plage de programmation : -99999,9999 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors de l'alésage à l'alésoir en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU Q211 Temporisation au fond? : temps en secondes pendant lequel l'outil reste au fond du trou. Plage de programmation : 0 à 3600,0000 Q208 Avance retrait? : vitesse de déplacement de l'outil lors de sa sortie du trou, en mm/min. Si vous programmez Q208 = 0, alors c'est l'avance de l'alésage à l'alésoir qui s'appliquera. Plage de programmation : 0 à 99999,999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Exemple 11 CYCL DEF 201 ALES.A L'ALESOIR Q200=2 ;DISTANCE D'APPROCHE Q201=-15 ;PROFONDEUR Q206=100 ;AVANCE PLONGEE PROF. Q211=0.5 ;TEMPO. AU FOND Q208=250 ;AVANCE RETRAIT Q203=+20 ;COORD. SURFACE PIECE Q204=100 ;SAUT DE BRIDE 12 L X+30 Y+20 FMAX M3 13 CYCL CALL 14 L X+80 Y+50 FMAX M9 15 L Z+100 FMAX M2 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 81 4 Cycles d'usinage : perçage | ALESAGE A L'OUTIL (cycle 202, DIN/ISO : G202, option 19) 4.4 ALESAGE A L'OUTIL (cycle 202, DIN/ISO : G202, option 19) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche, au-dessus de la surface de la pièce, sur l'axe de la broche. 2 L'outil perce à la profondeur avec l'avance de perçage. 3 Au fond du trou, l'outil exécute une temporisation (si celle-ci a été programmée) avec la broche en rotation pour casser les copeaux. 4 La commande effectue ensuite une orientation de la broche à la position définie au paramètre Q336. 5 Si vous avez sélectionné le dégagement, la commande dégage l'outil de 0,2 mm (valeur fixe) dans le sens programmé. 6 La commande amène ensuite l'outil à la distance d'approche avec l'avance de retrait, puis au saut de bride avec l'avance FMAX. Le saut de bride Q204 n'agit que si la valeur programmée est supérieure à celle de la distance d'approche Q200.. Si Q214=0, le retrait s'effectue sur la paroi du trou. 7 Pour finir, la commande repositionne l'outil au centre du perçage. 82 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | ALESAGE A L'OUTIL (cycle 202, DIN/ISO : G202, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive REMARQUE Attention, risque de collision ! Il existe un risque de collision si le sens de dégagement sélectionné est incorrect. Une éventuelle mise en miroir dans le plan d’usinage n'est pas prise en compte pour le sens de dégagement. En revanche, les transformations actives sont prises en compte pour le dégagement. Vérifiez la position de la pointe de l'outil lorsque vous programmez une orientation de la broche à un angle que vous avez défini au paramètre Q336 (par ex. en mode Positionnement avec introd. man.). Aucune transformation ne doit être active dans ce cas. Choisir l’angle de sorte que la pointe de l’outil soit parallèle au sens de dégagement Sélectionner le sens de dégagement Q214 de manière à ce que l'outil s'éloigne du bord du trou. La machine et la commande doivent avoir été préparées par le constructeur de la machine. Ce cycle n'est utilisable que sur des machines avec une broche asservie. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 83 4 Cycles d'usinage : perçage | ALESAGE A L'OUTIL (cycle 202, DIN/ISO : G202, option 19) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécute pas le cycle. Une fois l'usinage terminé, la commande ramène l'outil au point de départ du plan d'usinage. Vous pouvez ainsi positionner à nouveau l'outil en incrémental. Si la fonction M7 ou M8 était activée avant l'appel de cycle, la commande rétablit cet état à la fin du cycle. 84 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | ALESAGE A L'OUTIL (cycle 202, DIN/ISO : G202, option 19) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du trou. Plage de programmation : -99999,9999 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors de l'alésage à l'outil, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU Q211 Temporisation au fond? : temps en secondes pendant lequel l'outil reste au fond du trou. Plage de programmation : 0 à 3600,0000 Q208 Avance retrait? : vitesse de déplacement de l'outil lors de sa sortie du trou, en mm/min. Si vous entrez Q208=0, l'avance de plongée en profondeur s'applique. Plage de programmation : 0 à 99999,999, sinon FMAX, FAUTO Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q214 Sens dégagement (0/1/2/3/4)? : vous définissez ici le sens dans lequel la commande dégage l'outil au fond du trou (après l'orientation de la broche) 0 : ne pas dégager l'outil 1 : dégager l'outil dans le sens négatif de l'axe principal 2 : dégager l'outil dans le sens négatif de l'axe auxiliaire 3 : dégager l'outil dans le sens positif de l'axe principal 4 : dégager l'outil dans le sens positif de l'axe auxiliaire Q336 Angle pour orientation broche? (en absolu) : angle auquel la TNC doit positionner l'outil avant son dégagement. Plage de programmation : -360,000 à 360,000 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 10 L Z+100 R0 FMAX 11 CYCL DEF 202 ALES. A L'OUTIL Q200=2 ;DISTANCE D'APPROCHE Q201=-15 ;PROFONDEUR Q206=100 ;AVANCE PLONGEE PROF. Q211=0.5 ;TEMPO. AU FOND Q208=250 ;AVANCE RETRAIT Q203=+20 ;COORD. SURFACE PIECE Q204=100 ;SAUT DE BRIDE Q214=1 ;SENS DEGAGEMENT Q336=0 ;ANGLE BROCHE 12 L X+30 Y+20 FMAX M3 13 CYCL CALL 14 L X+80 Y+50 FMAX M99 85 4 Cycles d'usinage : perçage | PERCAGE UNIVERSEL (cycle 203, DIN/ISO : G203, option 19) 4.5 PERCAGE UNIVERSEL (cycle 203, DIN/ISO : G203, option 19) Mode opératoire du cycle Comportement sans brise-copeaux, sans valeur de réduction 1 La commande déplace l’outil en avance rapide FMAX sur l’axe de la broche pour le positionner à la DISTANCE D'APPROCHE Q200 définie, au-dessus de la surface de la pièce. 2 L'outil effectue le perçage avec l'AVANCE PLONGEE PROF. Q206 jusqu'à la première PROFONDEUR DE PASSE Q202. 3 Ensuite, la commande fait sortir l’outil du trou et le positionne à la DISTANCE D'APPROCHEQ200. 4 Là, la commande fait à nouveau plonger l’outil en avance rapide dans le trou, où il effectue alors une nouvelle passe correspondant à la PROFONDEUR DE PASSEQ202 AVANCE PLONGEE PROF..AVANCE PLONGEE PROF. Q206 5 Si vous travaillez sans brise-copeaux, la commande dégage l’outil du trou après chaque passe avec l’AVANCE RETRAITQ208 et le positionne à la DISTANCE D'APPROCHEQ200 où il reste immobilisé au besoin selon la TEMPO. EN HAUTQ210. 6 Cette opération est répétée jusqu’à ce que la profondeur Q201 soit atteinte. 7 Lorsque la PROFONDEUR Q201 est atteinte, la commande retire l'outil du trou avec l'avance FMAX pour l'amener soit à la DISTANCE D'APPROCHE Q200 soit au SAUT DE BRIDE Le SAUT DE BRIDE Q204 ne s'applique que si la valeur programmée est supérieure à celle de la DISTANCE D'APPROCHE Q200 86 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE UNIVERSEL (cycle 203, DIN/ISO : G203, option 19) Comportement avec brise-copeaux, sans valeur de réduction 1 La commande déplace l’outil en avance rapide FMAX sur l’axe de la broche pour le positionner à la DISTANCE D'APPROCHEQ200 définie, au-dessus de la surface de la pièce. 2 L'outil effectue le perçage avec l'AVANCE PLONGEE PROF. Q206 jusqu'à la première PROFONDEUR DE PASSE Q202. 3 La commande dégage ensuite l’outil en tenant compte de la valeur de RETR. BRISE-COPEAUX Q256. 4 Une nouvelle passe égale à la valeur de PROFONDEUR DE PASSE Q202 est effectuée avec l'AVANCE PLONGEE PROF. Q206 5 La commande fait plonger l'outil jusqu'à ce que le NB BRISES COPEAUX Q213 soit atteint ou jusqu'à ce que le trou atteigne la PROFONDEUR Q201 souhaitée. Si le nombre de brise-copeaux programmé est atteint sans que le trou n'ait lui encore atteint la PROFONDEUR Q201 souhaitée, la commande retire l'outil du trou avec l'AVANCE RETRAIT Q208 pour l'amener à la DISTANCE D'APPROCHE Q200. 6 La commande immobilise l'outil le temps de la TEMPO. EN HAUT Q210 (si programmée). 7 La commande effectue ensuite une plongée en avance rapide jusqu'à atteindre la valeur RETR. BRISE-COPEAUX Q256, audessus de la dernière profondeur de passe. 8 La procédure de 2 à 7 est répétée jusqu'à ce que la PROFONDEUR Q201 soit atteinte. 9 Lorsque la PROFONDEUR Q201 est atteinte, la commande retire l'outil du trou avec l'avance FMAX pour l'amener soit à la DISTANCE D'APPROCHE Q200 soit au SAUT DE BRIDE Le SAUT DE BRIDE Q204 ne s'applique que si la valeur programmée est supérieure à celle de la DISTANCE D'APPROCHE Q200 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 87 4 Cycles d'usinage : perçage | PERCAGE UNIVERSEL (cycle 203, DIN/ISO : G203, option 19) Comportement avec brise-copeaux, avec valeur de réduction 1 La commande déplace l’outil en avance rapide FMAX sur l’axe de la broche pour le positionner à la DISTANCE D'APPROCHEQ200 définie, au-dessus de la surface de la pièce. 2 L'outil effectue le perçage avec l'AVANCE PLONGEE PROF. Q206 jusqu'à la première PROFONDEUR DE PASSE Q202. 3 La commande dégage ensuite l’outil en tenant compte de la valeur de RETR. BRISE-COPEAUX Q256. 4 Une nouvelle passe est effectuée de la valeur de la PROFONDEUR DE PASSE Q202 moins la VALEUR REDUCTION Q212 avec l'AVANCE PLONGEE PROF. Q206. La différence continuellement à la baisse résultant de la PROFONDEUR DE PASSE Q202 actualisée moins la VALEUR REDUCTION Q212 ne doit pas être inférieure à la PROF. PASSE MIN. Q205 (exemple : Q202=5, Q212=1, Q213=4, Q205= 3 : la première profondeur de passe est de 5 mm, la deuxième de 5 – 1 = 4 mm, la troisième de 4 – 1 = 3 mm et la quatrième est aussi de 3 mm). 5 La commande fait plonger l'outil jusqu'à ce que le NB BRISES COPEAUX Q213 soit atteint ou jusqu'à ce que le trou atteigne la PROFONDEUR Q201 souhaitée. Si le nombre de brise-copeaux programmé est atteint sans que le trou n'ait lui encore atteint la PROFONDEUR Q201 souhaitée, la commande retire l'outil du trou avec l'AVANCE RETRAIT Q208 pour l'amener à la DISTANCE D'APPROCHE Q200. 6 La commande immobilise alors l'outil le temps de la TEMPO. EN HAUT Q210. 7 La commande effectue ensuite une plongée en avance rapide jusqu'à atteindre la valeur RETR. BRISE-COPEAUX Q256, audessus de la dernière profondeur de passe. 8 La procédure de 2 à 7 est répétée jusqu'à ce que la PROFONDEUR Q201 soit atteinte. 9 La commande immobilise alors l'outil le temps de la TEMPO. AU FOND Q211. 10 Lorsque la PROFONDEUR Q201 est atteinte, la commande retire l'outil du trou avec l'avance FMAX pour l'amener soit à la DISTANCE D'APPROCHE Q200 soit au SAUT DE BRIDE Le SAUT DE BRIDE Q204 ne s'applique que si la valeur programmée est supérieure à celle de la DISTANCE D'APPROCHE Q200 88 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE UNIVERSEL (cycle 203, DIN/ISO : G203, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécute pas le cycle. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 89 4 Cycles d'usinage : perçage | PERCAGE UNIVERSEL (cycle 203, DIN/ISO : G203, option 19) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du trou. Plage de programmation : -99999,9999 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors du perçage en mm/ min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU Q202 Profondeur de passe? (en incrémental) : la cote de chaque passe d'outil Plage de programmation : 0 à 99999,9999 La profondeur peut être un multiple de la profondeur de passe. La commande amène l'outil à la profondeur indiquée en une seule fois si : la profondeur de passe est égale à la profondeur la profondeur de passe est supérieure à la profondeur Q210 Temporisation en haut? : temps en secondes pendant lequel l'outil temporise à la distance d'approche une fois que la commande a sorti l'outil du trou pour dégager les copeaux. Plage de saisie 0 à 3600,0000 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q212 Valeur réduction? (en incrémental) : valeur de laquelle la commande réduit la Prof. approche Q202 après chaque passe. Plage de programmation : 0 à 99999,9999 Q213 Nb brises copeaux avt retrait? : nombre de brise-copeaux avant que la commande ne retire l'outil du trou pour enlever les copeaux. Pour briser les copeaux, la commande retire chaque fois l'outil de la valeur de retrait Q256. Plage de programmation : 0 à 99999 Q205 Profondeur passe min.? (en incrémental) : si vous avez programmé une VALEUR REDUCTION Q212, la commande limite la passe à Q205. Plage de programmation : 0 à 99999,9999 90 Exemple 11 CYCL DEF 203 PERCAGE UNIVERSEL Q200=2 ;DISTANCE D'APPROCHE Q201=-20 ;PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q202=5 ;PROFONDEUR DE PASSE Q210=0 ;TEMPO. EN HAUT Q203=+20 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q212=0.2 ;VALEUR REDUCTION Q213=3 ;NB BRISES COPEAUX Q205=3 ;PROF. PASSE MIN. Q211=0.25 ;TEMPO. AU FOND Q208=500 ;AVANCE RETRAIT Q256=0.2 ;RETR. BRISE-COPEAUX Q395=0 ;REFERENCE PROFONDEUR 12 L X+30 Y+20 FMAX M3 13 CYCL CALL HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE UNIVERSEL (cycle 203, DIN/ISO : G203, option 19) Q211 Temporisation au fond? : temps en secondes pendant lequel l'outil reste au fond du trou. Plage de programmation : 0 à 3600,0000 Q208 Avance retrait? : vitesse de déplacement de l'outil lors de sa sortie du trou, en mm/min. Si vous avez entré Q208=0, la commande fait sortir l'outil selon l'avance de plongée en profondeur Q206. Plage de programmation : 0 à 99999,999, sinon FMAX, FAUTO Q256 Retrait avec brise-copeaux? (en incrémental) : valeur de laquelle la commande retire l'outil en cas de brise-copeaux. Plage d'introduction 0,000 à 99999,999 Q395 Référence au diamètre (0/1) ? : vous choisissez ici si la profondeur indiquée doit se référer à la pointe de l'outil ou à la partie cylindrique de l'outil. Si la commande doit tenir compte de la profondeur par rapport à la partie cylindrique de l'outil, vous devez définir l'angle de la pointe de l'outil dans la colonne T-ANGLE du tableau d'outils TOOL.T. 0 = profondeur par rapport à la pointe de l'outil 1 = profondeur par rapport à la partie cylindrique de l'outil HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 91 4 Cycles d'usinage : perçage | LAMAGE EN TIRANT (cycle 204, DIN/ISO : G204, option 19) 4.6 LAMAGE EN TIRANT (cycle 204, DIN/ISO : G204, option 19) Mode opératoire du cycle Ce cycle permet d'usiner des lamages se trouvant sur la face inférieure de la pièce. 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche, au-dessus de la surface de la pièce, sur l'axe de la broche. 2 Là, la commande procède à une rotation broche à la position 0° et décale l'outil de la valeur de la cote excentrique. 3 L'outil plonge ensuite dans le perçage pré-percé, avec l'avance de pré-positionnement, jusqu'à ce que le tranchant se trouve à la distance d'approche, en dessous de l'arête inférieure de la pièce. 4 La commande déplace alors de nouveau l'outil au centre du trou, met en route la broche et l'arrosage (le cas échéant), puis amène l'outil à la profondeur de lamage, selon l'avance de lamage. 5 L'outil effectue une temporisation (si programmée) au fond du lamage. L'outil se dégage ensuite du trou, effectue une orientation broche et se décale à nouveau de la valeur de la cote excentrique. 6 Pour terminer, l'outil amène l'outil à la distance d'approche ou au saut de bride avec FMAX. Le saut de bride Q204 n'agit que si la valeur programmée est supérieure à celle de la distance d'approche Q200. 7 Pour finir, la commande repositionne l'outil au centre du perçage. 92 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | LAMAGE EN TIRANT (cycle 204, DIN/ISO : G204, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Il existe un risque de collision si le sens de dégagement sélectionné est incorrect. Une éventuelle mise en miroir dans le plan d’usinage n'est pas prise en compte pour le sens de dégagement. En revanche, les transformations actives sont prises en compte pour le dégagement. Vérifiez la position de la pointe de l'outil lorsque vous programmez une orientation de la broche à un angle que vous avez défini au paramètre Q336 (par ex. en mode Positionnement avec introd. man.). Aucune transformation ne doit être active dans ce cas. Choisir l’angle de sorte que la pointe de l’outil soit parallèle au sens de dégagement Sélectionner le sens de dégagement Q214 de manière à ce que l'outil s'éloigne du bord du trou. La machine et la commande doivent avoir été préparées par le constructeur de la machine. Ce cycle n'est utilisable que sur des machines avec une broche asservie. Le cycle ne fonctionne qu'avec des outils d'usinage en tirant. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Une fois l'usinage terminé, la commande ramène l'outil au point de départ du plan d'usinage. Vous pouvez ainsi positionner à nouveau l'outil en incrémental. Le signe du paramètre de cycle Profondeur définit le sens d’usinage pour le lamage Attention : le signe positif définit un lamage dans le sens de l'axe de broche positif. Programmer la longueur d'outil de sorte que l’arête inférieure de la barre d'alésage soit cotée, et non le tranchant. Pour le calcul du pont de départ du lamage, la commande tient compte de la longueur du tranchant de la barre de perçage et de l'épaisseur de la matière. Si la fonction M7 ou M8 était activée avant l'appel de cycle, la commande rétablit cet état à la fin du cycle. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 93 4 Cycles d'usinage : perçage | LAMAGE EN TIRANT (cycle 204, DIN/ISO : G204, option 19) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q249 Profondeur de plongée? (en incrémental) : distance entre l'arête inférieure de l'a pièce et le fond du trou. Le signe positif usine un lamage dans le sens positif de l'axe de broche. Plage de programmation : -99999,9999 à 99999,9999 Q250 Epaisseur matériau? (en incrémental) : épaisseur de la pièce. Plage de programmation : 0,0001 à 99999,9999 Q251 Cote excentrique? (en incrémental) : utiliser la cote excentrique de la tige de perçage qui figure dans la fiche technique de l'outil. Plage de programmation : 0,0001 à 99999,9999 Q252 Hauteur de la dent? (en incrémental) : distance entre l'arête inférieure de l'outil et la dent principale ; à relever sur la fiche technique de l'outil. Plage de programmation : 0,0001 à 99999,9999 Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil lors de sa plongée dans la pièce ou de sa sortie de la pièce, en mm/min. Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO Q254 Avance de plongée? : vitesse de déplacement de l'outil lors du perçage en mm/ min Plage de programmation : 0 à 99999,9999 ou FAUTO, FU Q255 Temporisation en secondes? : temporisation en secondes au fond du trou. Plage de programmation : 0 à 3600,000 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 94 Exemple 11 CYCL DEF 204 CONTRE-PERCAGE Q200=2 ;DISTANCE D'APPROCHE Q249=+5 ;PROF. DE PLONGEE Q250=20 ;EPAISSEUR MATERIAU Q251=3.5 ;COTE EXCENTRIQUE Q252=15 ;HAUTEUR DE LA DENT Q253=750 ;AVANCE PRE-POSIT. Q254=200 ;AVANCE PLONGEE Q255=0 ;TEMPORISATION HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | LAMAGE EN TIRANT (cycle 204, DIN/ISO : G204, option 19) Q214 Sens dégagement (0/1/2/3/4)? : pour définir le sens dans lequel la commande doit décaler l'outil avec la cote excentrique (après orientation de la broche) ; valeur 0 non autorisée 1 : dégager l'outil dans le sens négatif de l'axe principal 2 : dégager l'outil dans le sens négatif de l'axe auxiliaire 3 : dégager l'outil dans le sens positif de l'axe principal 4 : dégager l'outil dans le sens positif de l'axe auxiliaire Q336 Angle pour orientation broche? (en absolu) : angle sur lequel la commande positionne l'outil avant la plongée et avant le dégagement hors du trou Plage de programmation : -360,0000 à 360,0000 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q203=+20 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q214=1 ;SENS DEGAGEMENT Q336=0 ;ANGLE BROCHE 95 4 Cycles d'usinage : perçage | PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19) 4.7 PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche indiquée, au-dessus de la surface de la pièce, sur l'axe de la broche. 2 Si vous avez programmé un point de départ plus profond, la commande déplace l'outil avec l'avance de positionnement définie jusqu'à la distance d'approche, au-dessus du point de départ en profondeur. 3 L'outil procède au perçage avec l'avance définie F, jusqu'à la première profondeur de passe. 4 Si un brise-copeaux a été programmé, la commande retire l'outil de la valeur de retrait programmée. Si vous travaillez sans brisecopeaux, la commande ramène l'outil à la distance d'approche, en avance rapide, puis à la distance de sécurité, au-dessus de la première profondeur de passe, à nouveau en FMAX. 5 L'outil perce ensuite sur une autre profondeur de passe, avec l'avance programmée. A chaque passe, la profondeur de passe diminue de la valeur de réduction (si programmée). 6 La TNC répète cette procédure (2 à 4) jusqu'à ce que la profondeur de perçage soit atteinte. 7 Au fond du trou, l'outil effectue une temporisation (si programmée) pour briser les copeaux. Au terme de la temporisation, il revient à la distance d'approche ou au saut de bride, avec l'avance de retrait. Le saut de bride Q204 n'agit que si la valeur programmée est supérieure à celle de la distance d'approche Q200. 96 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécute pas le cycle. Si vous programmez des distances de sécurité Q258 différentes de Q259, la commande modifiera de manière homogène la distance de sécurité entre la première et la dernière passe. Si vous programmez un point de départ plus profond avec Q379, la commande ne modifiera que le point initial du mouvement de plongée. La commande ne modifie pas les mouvements de retrait. Ces derniers se réfèrent à la coordonnée de la surface de la pièce. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 97 4 Cycles d'usinage : perçage | PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du trou (pointe du cône de perçage). Plage de programmation : -99999,9999 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors du perçage en mm/ min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU Q202 Profondeur de passe? (en incrémental) : la cote de chaque passe d'outil Plage de programmation : 0 à 99999,9999 La profondeur peut être un multiple de la profondeur de passe. La commande amène l'outil à la profondeur indiquée en une seule fois si : la profondeur de passe est égale à la profondeur la profondeur de passe est supérieure à la profondeur Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q212 Valeur réduction? (en incrémental) : valeur de réduction de la profondeur de passe Q202 par la commande. Plage de programmation : 0 à 99999,9999 Q205 Profondeur passe min.? (en incrémental) : si vous avez programmé une VALEUR REDUCTION Q212, la commande limite la passe à Q205. Plage de programmation : 0 à 99999,9999 Q258 Distance de sécurité en haut? (en incrémental) : distance de sécurité pour le positionnement en avance rapide lorsque la commande ramène l'outil à la profondeur de passe actuelle après un retrait du trou. Plage de programmation : 0 à 99999,9999 Q259 Distance de sécurité en bas? (en incrémental) : distance de sécurité pour le positionnement en rapide lorsque après un retrait hors du trou, la CN déplace à nouveau l'outil à la profondeur de passe actuelle; valeur lors de la dernière passe. Plage de programmation : 0 à 99999,9999 98 Exemple 11 CYCL DEF 205 PERC. PROF. UNIVERS. Q200=2 ;DISTANCE D'APPROCHE Q201=-80 ;PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q202=15 ;PROFONDEUR DE PASSE Q203=+100 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q212=0.5 ;VALEUR REDUCTION Q205=3 ;PROF. PASSE MIN. Q258=0.5 ;DIST. SECUR. EN HAUT Q259=1 ;DIST. SECUR. EN BAS Q257=5 ;PROF.PERC.BRISE-COP. Q256=0.2 ;RETR. BRISE-COPEAUX Q211=0.25 ;TEMPO. AU FOND Q379=7.5 ;POINT DE DEPART Q253=750 ;AVANCE PRE-POSIT. Q208=9999 ;AVANCE RETRAIT Q395=0 ;REFERENCE PROFONDEUR HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19) Q257 Prof. perç. pour brise-copeaux? (en incrémental) : passe après laquelle la commande exécute un brise-copeaux. Pas de brise-copeaux si l'on a indiqué 0. Plage de programmation : 0 à 99999,9999 Q256 Retrait avec brise-copeaux? (en incrémental) : valeur de laquelle la commande retire l'outil en cas de brise-copeaux. Plage d'introduction 0,000 à 99999,999 Q211 Temporisation au fond? : temps en secondes pendant lequel l'outil reste au fond du trou. Plage de programmation : 0 à 3600,0000 Q379 Point de départ plus profond? (en incrémental par rapport à la valeur Q203 COORD. SURFACE PIECE, tient compte de Q200) : pont de départ du perçage effectif. La commande déplace l'outil avec Q253 AVANCE PRE-POSIT. de la valeur de Q200 DISTANCE D'APPROCHE jusqu'à arriver au-dessus du point de départ en profondeur. Plage de programmation : 0 à 99999,9999 Q253 Avance de pré-positionnement? : pour définir la vitesse de déplacement de l'outil lors de l'approche de Q201 PROFONDEUR selon Q256 RETR. BRISE-COPEAUX. Cette avance agit également lorsque l'outil est positionné au POINT DE DEPART Q379 (valeur différente de 0). Valeur en mm/min Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO Q208 Avance retrait? : vitesse de déplacement de l'outil lors de son dégagement après l'usinage, en mm/min. Si vous avez entré Q208=0, la commande fait sortir l'outil selon l'avance de plongée en profondeur Q206. Plage de programmation : 0 à 99999,9999, sinon FMAX, FAUTO Q395 Référence au diamètre (0/1) ? : vous choisissez ici si la profondeur indiquée doit se référer à la pointe de l'outil ou à la partie cylindrique de l'outil. Si la commande doit tenir compte de la profondeur par rapport à la partie cylindrique de l'outil, vous devez définir l'angle de la pointe de l'outil dans la colonne T-ANGLE du tableau d'outils TOOL.T. 0 = profondeur par rapport à la pointe de l'outil 1 = profondeur par rapport à la partie cylindrique de l'outil HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 99 4 Cycles d'usinage : perçage | PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19) Comportement du positionnement lors du travail avec Q379 Le travail avec des forets de très grande longueur, tels que les forets monolèvres ou les forets hélicoïdaux très longs, impose de prendre certains éléments en compte. La position à laquelle la broche est activée est décisive. Si l'outil n'est pas correctement asservi, il peut en résulter des bris d'outils, dans le cas des forets de grande longueur. Pour cette raison, il est recommandé de travaillé avec le paramètre POINT DE DEPART Q379. Ce paramètre vous permet de jouer sur la position à laquelle la commande active la broche. Début du perçage Le paramètre POINT DE DEPART Q379 tient alors compte des paramètres COORD. SURFACE PIECE Q203 et DISTANCE D'APPROCHE Q200. L'exemple suivant illustre la corrélation entre les paramètres et explique comment calculer la position de départ : POINT DE DEPART Q379=0 La commande active la broche à la DISTANCE D'APPROCHE Q200, au-dessus de COORD. SURFACE PIECE Q203. POINT DE DEPART Q379>0 Le perçage débute à une valeur définie au-dessus du point de départ en profondeur Q379. Cette valeur se calcule comme suit : 0,2 x Q379 Si le résultat de ce calcul est supérieur à Q200, la valeur est toujours Q200. Exemple : COORD. SURFACE PIECE Q203 =0 DISTANCE D'APPROCHE Q200 =2 POINT DE DEPART Q379 =2 Le début du perçage se calcule comme suit : 0,2 x Q379=0,2*2=0,4 ; le début du perçage est à 0,4 mm/inch au-dessus du point de départ qui se trouve en profondeur. Si le point de départ en profondeur est à -2, la commande débute la procédure de perçage à -1,6 mm. Le tableau suivant présente différents exemples expliquant comment calculer le début du perçage : 100 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19) Début du perçage avec le point de départ en profondeur Q200 Q379 Q203 Position à Facteur 0,2 * Q379 laquelle le prépositionnement est effectué avec FMAX Début du perçage 2 2 0 2 0,2*2=0,4 -1,6 2 5 0 2 0,2*5=1 -4 2 10 0 2 0,2*10=2 -8 2 25 0 2 0,2*25=5 (Q200=2, 5>2, la valeur 2 est de ce fait utilisée.) -23 2 100 0 2 0,2*100=20 (Q200=2, 20>2, la valeur 2 est de ce fait utilisée.) -98 5 2 0 5 0,2*2=0,4 -1,6 5 5 0 5 0,2*5=1 -4 5 10 0 5 0,2*10=2 -8 5 25 0 5 0,2*25=5 -20 5 100 0 5 0,2*100=20 (Q200=5, 20>5, la valeur 5 est de ce fait utilisée.) -95 20 2 0 20 0,2*2=0,4 -1,6 20 5 0 20 0,2*5=1 -4 20 10 0 20 0,2*10=2 -8 20 25 0 20 0,2*25=5 -20 20 100 0 20 0,2*100=20 -80 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 101 4 Cycles d'usinage : perçage | PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19) Débourrage Le point au niveau duquel la commande procède au débourrage est un aspect important à prendre en compte lorsque l'on travaille avec des outils très longs. La position de retrait lors du débourrage ne doit pas se situer à la position du début du perçage. Une position définie pour le débourrage permet d'assurer que le foret reste dans le guidage. POINT DE DEPART Q379=0 Le débourrage s'effectue à la DISTANCE D'APPROCHE Q200, audessus de la COORD. SURFACE PIECE Q203. POINT DE DEPART Q379>0 Le débourrage a lieu à une valeur définie au-dessus du point de départ en profondeur Q379. Cette valeur se calcule comme suit : 0,8 x Q379. Si le résultat de ce calcul est supérieur à Q200 la valeur sera toujours égale à Q200. Exemple : COORD. SURFACE PIECE Q203 =0 DISTANCE D'APPROCHEQ200 =2 POINT DE DEPART Q379 =2 La position pour le débourrage se calcule comme suit : 0,8 x Q379=0,8*2=1,6 ; la position pour le débourrage est à 1,6 mm/inch au-dessus du point de départ en profondeur. Si le point de départ en profondeur est à -2, la commande amène l'outil en position de débourrage à -0,4. Le tableau suivant présente différents exemples expliquant comment calculer la position pour le débourrage (position de retrait) : 102 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE PROFOND UNIVERSEL (cycle 205, DIN/ISO: G205, option 19) Position pour le débourrage (position de retrait) avec le point de départ en profondeur Q200 Q379 Q203 Position sur Facteur 0,8 * Q379 laquelle le prépositionnement est effectué avec FMAX Position de retrait 2 2 0 2 0,8*2=1,6 -0,4 2 5 0 2 0,8*5=4 -3 2 10 0 2 0,8*10=8 (Q200=2, 8>2, la valeur 2 est de ce fait utilisée.) -8 2 25 0 2 0,8*25=20 (Q200=2, 20>2, la valeur 2 est de ce fait utilisée.) -23 2 100 0 2 0,8*100=80 (Q200=2, 80>2, la valeur 2 est de ce fait utilisée.) -98 5 2 0 5 0,8*2=1,6 -0,4 5 5 0 5 0,8*5=4 -1 5 10 0 5 0,8*10=8 (Q200=5, 8>5, la valeur 5 est de ce fait utilisée.) -5 5 25 0 5 0,8*25=20 (Q200=5, 20>5, la valeur 5 est de ce fait utilisée.) -20 5 100 0 5 0,8*100=80 (Q200=5, 80>5, la valeur 5 est de ce fait utilisée.) -95 20 2 0 20 0,8*2=1,6 -1,6 20 5 0 20 0,8*5=4 -4 20 10 0 20 0,8*10=8 -8 20 25 0 20 0,8*25=20 -20 20 100 0 20 0,8*100=80 (Q200=20, 80>20, la valeur 20 est de ce fait utilisée.) -80 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 103 4 Cycles d'usinage : perçage | FRAISAGE DE TROUS (cycle 208, DIN/ISO : G208, option 19) 4.8 FRAISAGE DE TROUS (cycle 208, DIN/ISO : G208, option 19) Mode opératoire du cycle 1 La CN positionne l'outil à la distance d'approche Q200 définie, au-dessus de la surface de la pièce, sur l'axe de la broche, en avance rapide FMAX. 2 A l'étape suivante, la CN approche la première trajectoire hélicoïdale en demi-cercle (en partant du centre). 3 Suivant l'avance F programmée, l'outil fraise jusqu'à la profondeur de perçage en suivant une trajectoire hélicoïdale. 4 Une fois la profondeur de perçage atteinte, la commande fait une nouvelle fois effectuer à l'outil un mouvement en cercle entier pour se débarrasser de la matière enlevée pendant la plongée. 5 La CN repositionne ensuite l'outil au centre du trou, à la distance d'approche Q200. 6 Cette procédure se répète jusqu'à ce que le diamètre nominal soit atteint (passe latérale calculée par la CN). 7 Pour finir, l'outil est amené à la distance d'approche ou au saut de bride Q204, en avance rapide FMAX. Le saut de bride Q204 n'est utilisé que si sa valeur est supérieure à celle de la distance d'approche Q200. 104 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | FRAISAGE DE TROUS (cycle 208, DIN/ISO : G208, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécute pas le cycle. Si vous avez programmé un diamètre de trou égal au diamètre de l'outil, la commande perce directement à la profondeur programmée, sans interpolation hélicoïdale. Une image miroir active n'agit pas sur le mode de fraisage défini dans le cycle. Veillez à ce ni votre outil ni la pièce ne soient endommagés suite à une passe trop importante. Pour éviter de programmer des passes trop grandes, programmer l'angle de plongée max. de l'outil dans la colonne ANGLE du tableau d'outils TOOL.T. La commande calcule alors automatiquement la passe maximale autorisée et modifie au besoin la valeur que vous avez programmée. Pour calculer la passe et le facteur de recouvrement, le rayon d'angle DR2 de l'outil actuel est aussi pris en compte. Pour la première trajectoire hélicoïdale, le facteur de recouvrement choisi est le plus élevé possible, afin d'éviter que l'outil ne touche le fond du trou. Toutes les autres trajectoires sont réparties uniformément. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 105 4 Cycles d'usinage : perçage | FRAISAGE DE TROUS (cycle 208, DIN/ISO : G208, option 19) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre l'arête inférieure de l'outil et la surface de la pièce Plage de programmation : 0 à 99999,9999 Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du trou. Plage de programmation : -99999,9999 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors du perçage en trajectoire hélicoïdale, en mm/min. Plage de programmation : 0 à 99999,999 sinon FAUTO, FU, FZ Q334 Passe par rotation de l'hélice (en incrémental) : distance parcourue par l'outil en une passe hélicoïdale (=360°). Plage de programmation : 0 à 99999,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q335 Diamètre nominal? (en absolu) : diamètre de perçage. Si vous programmez un diamètre nominal égal au diamètre d'outil, alors la commande percera directement à la profondeur indiquée, sans interpolation hélicoïdale. Plage de programmation : 0 à 99999,9999 Q342 Diamètre d'ébauche? (en absolu) : définition de la cote du diamètre pré-percé. Plage de programmation : 0 à 99999,9999 Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage Le sens de rotation de la broche est pris en compte. +1 = Fraisage en avalant –1 = Fraisage en opposition (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) 106 Exemple 12 CYCL DEF 208 FRAISAGE DE TROUS Q200=2 ;DISTANCE D'APPROCHE Q201=-80 ;PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q334=1.5 ;PROFONDEUR DE PASSE Q203=+100 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q335=25 ;DIAMETRE NOMINAL Q342=0 ;DIAMETRE PRE-PERCAGE Q351=+1 ;MODE FRAISAGE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE PROFOND MONOLEVRE (cycle 241, DIN/ISO : G241, option 19) 4.9 PERCAGE PROFOND MONOLEVRE (cycle 241, DIN/ISO : G241, option 19) Mode opératoire du cycle 1 La commande positionne l'outil à la Distance de sécurité Q200, au-dessus de la COORD. SURFACE PIECE Q203, dans l'axe de la broche, en avance rapide FMAX. 2 Dépend du "Comportement du positionnement lors du travail avec Q379", Page 100 la CN active la vitesse de rotation broche soit à la Distance de sécurité Q200, soit à une valeur que vous aurez définie au-dessus de la surface de coordonnées. voir Page 100 3 La commande exécute le mouvement d'approche selon le sens de rotation défini dans le cycle, avec la broche tournant dans le sens horaire ou anti-horaire, ou encore avec la broche à l'arrêt. 4 L'outil perce avec l'avance F jusqu'à atteindre la profondeur de perçage ou jusqu'à atteindre la profondeur de perçage ou une valeur de passe inférieure, si une valeur de passe inférieure a été programmée. A chaque passe, la profondeur de passe diminue de la valeur de réduction. Si vous avez renseigné une profondeur de temporisation, la commande réduit l'avance après avoir atteint la profondeur de temporisation avec le facteur d'avance. 5 Au fond du trou, l'outil exécute une temporisation (si celle-ci a été programmée) pour dégager les copeaux. 6 La TNC répète cette procédure (4 à 5) jusqu'à ce que la profondeur de perçage soit atteinte. 7 Une fois que la commande a atteint la profondeur de perçage, elle désactive l'arrosage. Elle commute aussi la vitesse de rotation à la valeur définie au paramètre Q427 VIT.ROT. ENTR./ SORT.. 8 La commande positionne l'outil à la position de retrait avec l'avance de retrait. Pour connaître la valeur de la position de retrait, se référer au document suivant : voir Page 100 9 Si vous avez programmé un saut de bride, la commande y amène l'outil avec l'avance FMAX. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 107 4 Cycles d'usinage : perçage | PERCAGE PROFOND MONOLEVRE (cycle 241, DIN/ISO : G241, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécute pas le cycle. 108 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE PROFOND MONOLEVRE (cycle 241, DIN/ISO : G241, option 19) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance Pointe de l'outil – Q203 COORD. SURFACE PIECE. Plage de programmation : 0 à 99999,9999 Q201 Profondeur? (en incrémental) : distance Q203 COORD. SURFACE PIECE – Fond du trou. Plage de programmation : -99999,9999 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors du perçage en mm/ min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU Q211 Temporisation au fond? : temps en secondes pendant lequel l'outil reste au fond du trou. Plage de programmation : 0 à 3600,0000 Q203 Coordonnées surface pièce? (en absolu) : distance par rapport au point zéro de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q379 Point de départ plus profond? (en incrémental par rapport à la valeur Q203 COORD. SURFACE PIECE, tient compte de Q200) : pont de départ du perçage effectif. La commande déplace l'outil avec Q253 AVANCE PRE-POSIT. de la valeur de Q200 DISTANCE D'APPROCHE jusqu'à arriver au-dessus du point de départ en profondeur. Plage de programmation : 0 à 99999,9999 Q253 Avance de pré-positionnement? : pour définir la vitesse de déplacement de l'outil lors de l'approche de Q201 PROFONDEUR selon Q256 RETR. BRISE-COPEAUX. Cette avance agit également lorsque l'outil est positionné au POINT DE DEPART Q379 (valeur différente de 0). Valeur en mm/min Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO Exemple 11 CYCL DEF 241 PERC.PROF. MONOLEVRE Q200=2 ;DISTANCE D'APPROCHE Q201=-80 ;PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q211=0.25 ;TEMPO. AU FOND Q203=+100 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q379=7.5 ;POINT DE DEPART Q253=750 ;AVANCE PRE-POSIT. Q208=1000 ;AVANCE RETRAIT Q426=3 ;SENS ROT. BROCHE Q427=25 ;VIT.ROT. ENTR./SORT. Q428=500 ;VITESSE ROT. PERCAGE Q429=8 ;MARCHE ARROSAGE Q430=9 ;ARRET ARROSAGE Q435=0 ;PROF. DE TEMPO. Q401=100 ;FACTEUR D'AVANCE Q202=9999 ;PROF. PLONGEE MAX. Q212=0 ;VALEUR REDUCTION Q205=0 ;PROF. PASSE MIN. Q208 Avance retrait? : vitesse de déplacement de l'outil lors de sa sortie du trou, en mm/min. Si vous avez paramétré Q208=0, la commande retire l'outil avec Q206 AVANCE PLONGEE PROF.. Plage de programmation : 0 à 99999,999, sinon FMAX, FAUTO HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 109 4 Cycles d'usinage : perçage | PERCAGE PROFOND MONOLEVRE (cycle 241, DIN/ISO : G241, option 19) Q426 Sens rot. entrée/sortie (3/4/5)? : sens de rotation dans lequel l'outil doit entrer dans le trou percé et en sortir. Saisie : 3 : rotation broche avec M3 4 : rotation broche avec M4 5 : déplacement avec broche à l'arrêt Q427 Vitesse broche en entrée/sortie? : vitesse de rotation à laquelle l'outil entre dans le trou percé et en ressort. Plage de programmation : 0 à 99999 Q428 Vitesse de broche pour perçage? : vitesse de rotation à laquelle l'outil doit effectuer le perçage. Plage de programmation : 0 à 99999 Q429 Fonction M MARCHE arrosage? : fonction auxiliaire M permettant d'activer l'arrosage. La commande active l'arrosage lorsque l'outil se trouve au POINT DE DEPART Q379 dans le trou percé. Plage de programmation : 0 à 999 Q430 Fonction M ARRET arrosage? : fonction auxiliaire M permettant de désactiver l'arrosage. La commande désactive l'arrosage lorsque l'outil se trouve à Q201 PROFONDEUR. Plage de programmation : 0 à 999 Q435 Profondeur de temporisation? (en incrémental) : coordonnée de l'axe de la broche à laquelle l'outil doit être temporisé. La fonction est inactive avec la valeur 0 (par défaut). Application : certains outils, quand ils usinent des trous traversants, ont besoin d'une brève temporisation avant de sortir de la matière, de façon à dégager les copeaux vers le haut. Définir une valeur inférieure à Q201 PROFONDEUR. Plage de programmation : 0 à 99999,9999 Q401 Facteur d'avance en %? : facteur de réduction de l'avance par la commande après avoir atteint Q435 PROF. DE TEMPO.. Plage de programmation : 0 à 100 Q202 Profondeur de plongée max.? (en incrémental) : la cote de chaque passe d'outil Q201 PROFONDEUR ne doit pas être un multiple de Q202. Plage de programmation : 0 à 99999,9999 Q212 Valeur réduction? (en incrémental) : valeur de laquelle la commande réduit la Prof. approche Q202 après chaque passe. Plage de programmation : 0 à 99999,9999 Q205 Profondeur passe min.? (en incrémental) : si vous avez programmé une VALEUR REDUCTION Q212, la commande limite la passe à Q205. Plage de programmation : 0 à 99999,9999 110 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE PROFOND MONOLEVRE (cycle 241, DIN/ISO : G241, option 19) Comportement du positionnement lors du travail avec Q379 Le travail avec des forets de très grande longueur, tels que les forets monolèvres ou les forets hélicoïdaux très longs, impose de prendre certains éléments en compte. La position à laquelle la broche est activée est décisive. Si l'outil n'est pas correctement asservi, il peut en résulter des bris d'outils, dans le cas des forets de grande longueur. Pour cette raison, il est recommandé de travaillé avec le paramètre POINT DE DEPART Q379. Ce paramètre vous permet de jouer sur la position à laquelle la commande active la broche. Début du perçage Le paramètre POINT DE DEPART Q379 tient alors compte des paramètres COORD. SURFACE PIECE Q203 et DISTANCE D'APPROCHE Q200. L'exemple suivant illustre la corrélation entre les paramètres et explique comment calculer la position de départ : POINT DE DEPART Q379=0 La commande active la broche à la DISTANCE D'APPROCHE Q200, au-dessus de COORD. SURFACE PIECE Q203. POINT DE DEPART Q379>0 Le perçage débute à une valeur définie au-dessus du point de départ en profondeur Q379. Cette valeur se calcule comme suit : 0,2 x Q379 Si le résultat de ce calcul est supérieur à Q200, la valeur est toujours Q200. Exemple : COORD. SURFACE PIECE Q203 =0 DISTANCE D'APPROCHE Q200 =2 POINT DE DEPART Q379 =2 Le début du perçage se calcule comme suit : 0,2 x Q379=0,2*2=0,4 ; le début du perçage est à 0,4 mm/inch au-dessus du point de départ qui se trouve en profondeur. Si le point de départ en profondeur est à -2, la commande débute la procédure de perçage à -1,6 mm. Le tableau suivant présente différents exemples expliquant comment calculer le début du perçage : HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 111 4 Cycles d'usinage : perçage | PERCAGE PROFOND MONOLEVRE (cycle 241, DIN/ISO : G241, option 19) Début du perçage avec le point de départ en profondeur Q200 Q379 Q203 Position à Facteur 0,2 * Q379 laquelle le prépositionnement est effectué avec FMAX Début du perçage 2 2 0 2 0,2*2=0,4 -1,6 2 5 0 2 0,2*5=1 -4 2 10 0 2 0,2*10=2 -8 2 25 0 2 0,2*25=5 (Q200=2, 5>2, la valeur 2 est de ce fait utilisée.) -23 2 100 0 2 0,2*100=20 (Q200=2, 20>2, la valeur 2 est de ce fait utilisée.) -98 5 2 0 5 0,2*2=0,4 -1,6 5 5 0 5 0,2*5=1 -4 5 10 0 5 0,2*10=2 -8 5 25 0 5 0,2*25=5 -20 5 100 0 5 0,2*100=20 (Q200=5, 20>5, la valeur 5 est de ce fait utilisée.) -95 20 2 0 20 0,2*2=0,4 -1,6 20 5 0 20 0,2*5=1 -4 20 10 0 20 0,2*10=2 -8 20 25 0 20 0,2*25=5 -20 20 100 0 20 0,2*100=20 -80 112 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | PERCAGE PROFOND MONOLEVRE (cycle 241, DIN/ISO : G241, option 19) Débourrage Le point au niveau duquel la commande procède au débourrage est un aspect important à prendre en compte lorsque l'on travaille avec des outils très longs. La position de retrait lors du débourrage ne doit pas se situer à la position du début du perçage. Une position définie pour le débourrage permet d'assurer que le foret reste dans le guidage. POINT DE DEPART Q379=0 Le débourrage s'effectue à la DISTANCE D'APPROCHE Q200, audessus de la COORD. SURFACE PIECE Q203. POINT DE DEPART Q379>0 Le débourrage a lieu à une valeur définie au-dessus du point de départ en profondeur Q379. Cette valeur se calcule comme suit : 0,8 x Q379. Si le résultat de ce calcul est supérieur à Q200 la valeur sera toujours égale à Q200. Exemple : COORD. SURFACE PIECE Q203 =0 DISTANCE D'APPROCHEQ200 =2 POINT DE DEPART Q379 =2 La position pour le débourrage se calcule comme suit : 0,8 x Q379=0,8*2=1,6 ; la position pour le débourrage est à 1,6 mm/inch au-dessus du point de départ en profondeur. Si le point de départ en profondeur est à -2, la commande amène l'outil en position de débourrage à -0,4. Le tableau suivant présente différents exemples expliquant comment calculer la position pour le débourrage (position de retrait) : HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 113 4 Cycles d'usinage : perçage | PERCAGE PROFOND MONOLEVRE (cycle 241, DIN/ISO : G241, option 19) Position pour le débourrage (position de retrait) avec le point de départ en profondeur Q200 Q379 Q203 Position sur Facteur 0,8 * Q379 laquelle le prépositionnement est effectué avec FMAX Position de retrait 2 2 0 2 0,8*2=1,6 -0,4 2 5 0 2 0,8*5=4 -3 2 10 0 2 0,8*10=8 (Q200=2, 8>2, la valeur 2 est de ce fait utilisée.) -8 2 25 0 2 0,8*25=20 (Q200=2, 20>2, la valeur 2 est de ce fait utilisée.) -23 2 100 0 2 0,8*100=80 (Q200=2, 80>2, la valeur 2 est de ce fait utilisée.) -98 5 2 0 5 0,8*2=1,6 -0,4 5 5 0 5 0,8*5=4 -1 5 10 0 5 0,8*10=8 (Q200=5, 8>5, la valeur 5 est de ce fait utilisée.) -5 5 25 0 5 0,8*25=20 (Q200=5, 20>5, la valeur 5 est de ce fait utilisée.) -20 5 100 0 5 0,8*100=80 (Q200=5, 80>5, la valeur 5 est de ce fait utilisée.) -95 20 2 0 20 0,8*2=1,6 -1,6 20 5 0 20 0,8*5=4 -4 20 10 0 20 0,8*10=8 -8 20 25 0 20 0,8*25=20 -20 20 100 0 20 0,8*100=80 (Q200=20, 80>20, la valeur 20 est de ce fait utilisée.) -80 114 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | CENTRAGE (cycle 240, DIN/ISO : G240, option 19) 4.10 CENTRAGE (cycle 240, DIN/ISO : G240, option 19) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche, au-dessus de la surface de la pièce, sur l'axe de la broche. 2 L'outil centre, selon l'avance F programmée, jusqu’au diamètre de centrage ou jusqu’à la profondeur de centrage indiqué(e). 3 L'outil effectue une temporisation (si celle-ci a été définie) au fond du centrage. 4 Pour terminer, l'outil amène l'outil à la distance d'approche ou au saut de bride avec FMAX. Le saut de bride Q204 n'agit que si la valeur programmée est supérieure à celle de la distance d'approche Q200. Attention lors de la programmation! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec la correction de rayon R0. Le signe du paramètre de cycle Q344 (diamètre) ou Q201 (profondeur) définit le sens de l'usinage. Si vous programmez le diamètre ou la profondeur à 0, la commande n'exécute pas le cycle. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 115 4 Cycles d'usinage : perçage | CENTRAGE (cycle 240, DIN/ISO : G240, option 19) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce ; entrer une valeur positive. Plage de programmation : 0 à 99999,9999 Q343 Choix diam./profondeur (1/0) : vous sélectionnez ici si le centrage doit être réalisé par rapport au diamètre indiqué ou par rapport à la profondeur indiquée. Si la commande doit effectuer le centrage par rapport au diamètre programmé, vous devez définir l'angle de pointe de l'outil dans la colonne T-Angle du tableau d'outils TOOL.T. 0 : Centrage à la profondeur indiquée 1 : Centrage au diamètre indiqué Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du centrage (pointe du cône de centrage) N'a d'effet que si l'on a défini Q343=0. Plage de programmation : -99999,9999 à 99999,9999 Q344 Diamètre de contre-perçage (avec signe) : diamètre de centrage. N'a d'effet que si l'on a défini Q343=1. Plage de programmation : -99999,9999 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors du centrage, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU Q211 Temporisation au fond? : temps en secondes pendant lequel l'outil reste au fond du trou. Plage de programmation : 0 à 3600,0000 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Exemple 10 L Z+100 R0 FMAX 11 CYCL DEF 240 CENTRAGE Q200=2 ;DISTANCE D'APPROCHE Q343=1 ;CHOIX DIAM./PROFOND. Q201=+0 ;PROFONDEUR Q344=-9 ;DIAMETRE Q206=250 ;AVANCE PLONGEE PROF. Q211=0.1 ;TEMPO. AU FOND Q203=+20 ;COORD. SURFACE PIECE Q204=100 ;SAUT DE BRIDE 12 L x+30 y+20 R0 fmax m3 m99 13 L X+80 Y+50 R0 FMAX M99 116 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | Exemples de programmation 4.11 Exemples de programmation Exemple : cycles de perçage 0 BEGIN PGM C200 MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-20 Définition de la pièce brute 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S4500 Appel d'outil (rayon d'outil 3) 4 L Z+250 R0 FMAX Dégager l'outil 5 CYCL DEF 200 PERCAGE Définition du cycle Q200=2 ;DISTANCE D'APPROCHE Q201=-15 ;PROFONDEUR Q206=250 ;AVANCE PLONGEE PROF. Q202=5 ;PROFONDEUR DE PASSE Q210=0 ;TEMPO. EN HAUT Q203=-10 ;COORD. SURFACE PIECE Q204=20 ;SAUT DE BRIDE Q211=0,2 ;TEMPO. AU FOND Q395=0 ;REFERENCE PROFONDEUR 6 L X+10 Y+10 R0 FMAX M3 Aborder le trou 1, marche broche 7 CYCL CALL Appel du cycle 8 L Y+90 R0 FMAX M99 Approche du perçage 2, appel de cycle 9 L X+90 R0 FMAX M99 Approche du perçage 3, appel de cycle 10 L Y+10 R0 FMAX M99 Approche du perçage 4, appel de cycle 11 L Z+250 R0 FMAX M2 Dégager l'outil, fin de programme 12 END PGM C200 MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 117 4 Cycles d'usinage : perçage | Exemples de programmation Exemple : utilisation des cycles de perçage en liaison avec PATTERN DEF Les coordonnées du perçage sont mémorisées dans la définition du motif PATTERN DEF POS. Les coordonnées de perçage sont appelées par la commande avec CYCL CALL PAT. Les rayons d'outils sont sélectionnés de telle sorte que toutes les étapes d'usinage sont visibles dans le graphique de test. Déroulement du programme Centrage (rayon d'outil 4) Perçage (rayon d'outil 2,4) Taraudage (rayon d'outil 3) Informations complémentaires : "Principes de base", Page 122 0 BEGIN PGM 1 MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-20 Définition de la pièce brute 2 BLK FORM 0.2 X+100 Y+100 Y+0 3 TOOL CALL 1 Z S5000 Appel du cycle Centrage (rayon 4) 4 L Z+50 R0 FMAX Déplacer l'outil à la hauteur de sécurité 5 PATTERN DEF Définir toutes les positions de perçage dans le motif de points POS1( X+10 Y+10 Z+0 ) POS2( X+40 Y+30 Z+0 ) POS3( X+20 Y+55 Z+0 ) POS4( X+10 Y+90 Z+0 ) POS5( X+90 Y+90 Z+0 ) POS6( X+80 Y+65 Z+0 ) POS7( X+80 Y+30 Z+0 ) POS8( X+90 Y+10 Z+0 ) 6 CYCL DEF 240 CENTRAGE Q200=2 ;DISTANCE D'APPROCHE Q343=0 ;CHOIX DIAM./PROFOND. Q201=-2 ;PROFONDEUR Q344=-10 ;DIAMETRE Q206=150 ;AVANCE PLONGEE PROF. Q211=0 ;TEMPO. AU FOND Q203=+0 ;COORD. SURFACE PIECE Q204=10 ;SAUT DE BRIDE 7 GLOBAL DEF 125 POSITIONNEMENT Q345=+1 118 Définition du cycle Centrage Entre les deux points, la commande se sert de cette fonction pour positionner l'outil au saut de bride avec un CYCL CALL PAT. Cette fonction reste active jusqu’à M30. ;CHOIX HAUT. POSITNMT HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 4 Cycles d'usinage : perçage | Exemples de programmation 7 CYCL CALL PAT F5000 M13 Appel de cycle en lien avec un motif de points 8 L Z+100 R0 FMAX Dégagement de l'outil 9 TOOL CALL 2 Z S5000 Appel de l'outil Foret (rayon 2,4) 10 L Z+50 R0 F5000 Déplacer l'outil à la hauteur de sécurité 11 CYCL DEF 200 PERCAGE Définition du cycle Perçage Q200=2 ;DISTANCE D'APPROCHE Q201=-25 ;PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q202=5 ;PROFONDEUR DE PASSE Q210=0 ;TEMPO. EN HAUT Q203=+0 ;COORD. SURFACE PIECE Q204=10 ;SAUT DE BRIDE Q211=0,2 ;TEMPO. AU FOND Q395=0 ;REFERENCE PROFONDEUR 12 CYCL CALL PAT F500 M13 Appel de cycle en lien avec un motif de points 13 L Z+100 R0 FMAX Dégager l'outil 14 TOOL CALL Z S200 Appel de l'outil Taraud (rayon 3) 15 L Z+50 R0 FMAX Déplacer l'outil à la hauteur de sécurité 16 CYCL DEF 206 TARAUDAGE Définition du cycle Taraudage Q200=2 ;DISTANCE D'APPROCHE Q201=-25 ;PROFONDEUR FILETAGE Q206=150 ;AVANCE PLONGEE PROF. Q211=0 ;TEMPO. AU FOND Q203=+0 ;COORD. SURFACE PIECE Q204=10 ;SAUT DE BRIDE 17 CYCL CALL PAT F5000 M13 Appel de cycle en lien avec un motif de points 18 L Z+100 R0 FMAX M2 Dégager l'outil, fin de programme 19 END PGM 1 MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 119 5 Cycles d'usinage : taraudage / fraisage de filets 5 Cycles d'usinage : taraudage / fraisage de filets | Principes de base 5.1 Principes de base Vue d'ensemble La commande propose les cycles suivants pour une grande variété d'opérations de filetage : Softkey 122 Cycle Page 206 NOUVEAU TARAUDAGE Avec mandrin de compensation, pré-positionnement automatique, saut de bride 123 207 NOUVEAU TARAUDAGE RIGIDE Sans mandrin de compensation, avec pré-positionnement automatique, saut de bride 126 209 TARAUDAGE BRISECOPEAUX sans mandrin de compensation, avec pré-positionnement automatique, Distance d'approche, brise-copeaux 131 262 FRAISAGE DE FILETS Cycle de fraisage d'un filet dans une matière ébauchée 137 263 FILETAGE SUR UN TOUR Cycle de fraisage d'un filet dans une matière ébauchée avec fraisage d'un chanfrein 141 264 FILETAGE AVEC PERCAGE Cycle de perçage en pleine matière, suivi du fraisage d'un filet avec un outil 145 265 FILETAGE HELICOIDAL AVEC PERCAGE Cycle de fraisage d'un filet en plein matière 149 267 FILETAGE EXTERIEUR Cycle de fraisage d'un filet extérieur avec réalisation d'un chanfrein 153 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE avec mandrin de compensation (cycle 206, DIN/ISO : G206) 5.2 TARAUDAGE avec mandrin de compensation (cycle 206, DIN/ISO : G206) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche indiquée, au-dessus de la surface de la pièce, sur l'axe de la broche. 2 L'outil se déplace en une passe à la profondeur de perçage. 3 Le sens de rotation de la broche est ensuite inversé et l’outil revient à la distance d'approche, après temporisation. Si vous avez programmé un saut de bride, la commande y amène l'outil avec l'avance FMAX. 4 A la distance d'approche, le sens de rotation broche est à nouveau inversé. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 123 5 5 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE avec mandrin de compensation (cycle 206, DIN/ISO : G206) Attention lors de la programmation! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. L'outil doit être serré dans un mandrin de compensation. Le mandrin de compensation de longueur sert à compenser en cours d'usinage les tolérances d'avance et de vitesse de rotation. Pour un filet à droite, activer la broche avec M3 ; pour un filet à gauche, activer avec M4. Dans le cycle 206, la commande calcule le pas de filet à l'aide de la vitesse de rotation programmée et de l'avance définie dans le cycle. Il est possible de procéder aux réglages suivants avec le paramètre CfgThreadSpindle (n°113600) : sourceOverride (n°113603) : FeedPotentiometer (par défaut) (le potentiomètre de vitesse de rotation n'est pas actif), la CN adapte ensuite la vitesse de rotation en conséquence à SpindlePotentiometer (potentiomètre d'avance non actif) et thrdWaitingTime (n°113601) : durée de la temporisation au fond du taraudage, après l'arrêt de la broche thrdPreSwitch (n°113602) : temporisation de la broche avant d'atteindre le fond du taraudage 124 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE avec mandrin de compensation (cycle 206, DIN/ISO : G206) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Valeur indicative : 4 x pas de vis. Q201 Profondeur de filetage? (en incrémental) : distance entre la surface de la pièce et le fond du filet. Plage de programmation : -99999,9999 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors du taraudage. Plage d’introduction 0 à 99999,999 ou FAUTO Q211 Temporisation au fond? : entrer une valeur comprise entre 0 et 0,5 seconde pour éviter que l'outil ne cale lors de son retrait. Plage d'introduction 0 à 3600,0000 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Exemple 25 CYCL DEF 206 TARAUDAGE NEU Q200=2 ;DISTANCE D'APPROCHE Q201=-20 ;PROFONDEUR FILETAGE Q206=150 ;AVANCE PLONGEE PROF. Q211=0.25 ;TEMPO. AU FOND Q203=+25 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Calcul de l'avance : F = S x p F : Avance (en mm/min.) S: Vitesse de rotation broche (tours/min.) p: Pas du filet (mm) Dégagement en cas d'interruption du programme Si vous appuyez sur la touche Arrêt CN pendant le taraudage, la commande affiche une softkey pour vous permettre de dégager l'outil. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 125 5 5 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE sans mandrin de compensation GS (cycle 207, DIN/ISO : G207) 5.3 TARAUDAGE sans mandrin de compensation GS (cycle 207, DIN/ISO : G207) Mode opératoire du cycle La commande usine le filetage en une seule procédure ou plusieurs, sans mandrin de compensation linéaire. 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche indiquée, au-dessus de la surface de la pièce, sur l'axe de la broche. 2 L'outil se déplace en une passe à la profondeur de perçage. 3 Le sens de rotation de la broche est ensuite inversé et l'outil est retiré du trou pour être positionné à la distance d'approche. Si vous avez programmé un saut de bride, la commande y amène l'outil avec l'avance FMAX. 4 Une fois à la distance d'approche, la commande arrête la broche. Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive La machine et la commande doivent avoir été préparées par le constructeur de la machine. Cycle utilisable uniquement sur les machines avec asservissement de broche. 126 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE sans mandrin de compensation GS (cycle 207, DIN/ISO : G207) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Le potentiomètre de la vitesse de broche est inactif. Si vous programmez M3 (ou M4) avant ce cycle, la broche continuera de tourner à la fin du cycle (à la vitesse de rotation programmée avec la séquence TOOL CALL). Si vous ne programmez pas M3 (ou M4) avant ce cycle, la broche restera immobile à la fin du cycle. Vous devrez alors réactiver la broche avec M3 (ou M4) avant l'usinage suivant. Si vous renseignez le pas de filet du taraud dans la colonne Pitch du tableau d'outils, la commande compare le pas de filet inscrit dans le tableau d'outils avec celui qui est défini dans le cycle. La commande émet un message d'erreur si les valeurs ne concordent pas. Lors d'un taraudage, la broche et l'axe d'outil sont toujours synchronisés. La synchronisation peut avoir lieu aussi bien avec une broche en rotation qu'avec une broche à l'arrêt. Si vous ne modifiez pas les paramètres de dynamique (par ex. distance d'approche, vitesse de rotation broche,...), vous pourrez toujours effectuer le taraudage plus en profondeur ultérieurement. Il est toutefois recommandé de sélectionner la distance d'approche Q200 de manière à ce que l'axe d'outil quitte la course d'accélération dans la limite de cette course. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 127 5 5 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE sans mandrin de compensation GS (cycle 207, DIN/ISO : G207) Il est possible de procéder aux réglages suivants avec le paramètre CfgThreadSpindle (n°113600) : sourceOverride (n°113603) : potentiomètre de broche (potentiomètre de l'avance non actif) et potentiomètre d'avance (potentiomètre de la vitesse de rotation non actif) thrdWaitingTime (n°113601) : durée de la temporisation au fond du taraudage, après l'arrêt de la broche thrdPreSwitch (n°113602) : temporisation de la broche avant d'atteindre le fond du taraudage limitSpindleSpeed (n°113604) : limitation de la vitesse de rotation broche True: (la vitesse de rotation de la broche des petites profondeurs de filetage est limitée de manière à ce que la broche tourne à vitesse de rotation constante pendant env. 1/3 du temps) False: (aucune limitation) 128 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE sans mandrin de compensation GS (cycle 207, DIN/ISO : G207) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q201 Profondeur de filetage? (en incrémental) : distance entre la surface de la pièce et le fond du filet. Plage de programmation : -99999,9999 à 99999,9999 Q239 Pas de vis? : pas du filet. Le signe détermine le sens du filet : + = filet à droite – = filet à gauche Plage de programmation : -99,9999 à +99,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Exemple 26 CYCL DEF 207 TARAUDAGE RIGIDE NEU Q200=2 ;DISTANCE D'APPROCHE Q201=-20 ;PROFONDEUR FILETAGE Q239=+1 ;PAS DE VIS Q203=+25 ;COORD. SURFACE PIECE Q204=50 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 ;SAUT DE BRIDE 129 5 5 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE sans mandrin de compensation GS (cycle 207, DIN/ISO : G207) Dégagement en cas d'interruption du programme Dégagement en mode Positionnement avec introduction manuelle Procédez comme suit : Appuyer sur la touche NC stop pour interrompre le filetage Appuyer sur la softkey pour le dégagement Appuyer sur NC start L'outil sort du trou et retourne au point de départ de l'usinage. La broche s'arrête automatiquement. La commande émet un message. Dégagement en mode Exécution de programme en continu et Exécution de programme pas-à-pas Procédez comme suit : Pour interrompre le programme, appuyer sur la touche NC stop Appuyer sur la softkey DEPLACEMENT MANUEL. Dégager l'outil le long de l'axe de broche Pour poursuivre le programme, appuyer sur la softkey APPROCHER POSITION Appuyer ensuite sur NC start La CN ramène l'outil à la position qu'il avait avant l'Stop CN. REMARQUE Attention, risque de collision ! Lors du dégagement, si vous déplacez par exemple l'outil dans le sens positif plutôt que dans le sens négatif, il existe un risque de collision. Vous avez la possibilité de dégager l'outil dans le sens négatif et dans le sens positif de l'axe d'outil. Avant le dégagement, vous devez décider délibérément du sens dans lequel l’outil doit être dégagé du trou percé. 130 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE AVEC BRISE-COPEAUX(cycle 209, DIN/ISO : G209, option 19) 5.4 TARAUDAGE AVEC BRISECOPEAUX(cycle 209, DIN/ISO : G209, option 19) Mode opératoire du cycle La commande usine le filet en plusieurs passes à la profondeur programmée. Par paramètre, vous pouvez définir, lors du brisecopeaux si l'outil doit sortir du trou entièrement ou non. 1 La commande positionne l'outil à la distance d'approche programmée, au-dessus de la surface de la pièce, en avance rapide FMAX, sur l'axe de la broche, avant de procéder à une orientation de la broche à cet endroit. 2 L'outil se déplace à la profondeur de passe programmée, le sens de rotation de la broche s'inverse et, suivant ce qui a été défini, l'outil est rétracté selon une valeur donnée ou sort du trou pour être desserré. Si vous avez défini un facteur d'augmentation de la vitesse de rotation, la commande retire l'outil du trou avec une vitesse de rotation broche plus élevée, calculée en conséquence. 3 Le sens de rotation de la broche est ensuite à nouveau inversé et l'outil se déplace à la profondeur de passe suivante. 4 La commande répète cette procédure (2 à 3) jusqu'à ce que la profondeur de filetage soit atteinte. 5 L'outil revient ensuite la distance d'approche. Si vous avez programmé un saut de bride, la commande y amène l'outil avec l'avance FMAX. 6 Une fois à la distance d'approche, la commande arrête la broche. Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive La machine et la commande doivent avoir été préparées par le constructeur de la machine. Cycle utilisable uniquement sur les machines avec asservissement de broche. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 131 5 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE AVEC BRISE-COPEAUX(cycle 209, DIN/ISO : G209, option 19) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur de filetage détermine le sens de l’usinage. Le potentiomètre de la vitesse de broche est inactif. Si vous avez défini un facteur de vitesse de rotation pour le retrait rapide de l'outil au paramètre de cycle Q403, la commande limite alors la vitesse à la vitesse de rotation maximale de la gamme de broche active. Si vous programmez M3 (ou M4) avant ce cycle, la broche continuera de tourner à la fin du cycle (à la vitesse de rotation programmée avec la séquence TOOL CALL). Si vous ne programmez pas M3 (ou M4) avant ce cycle, la broche restera immobile à la fin du cycle. Vous devrez alors réactiver la broche avec M3 (ou M4) avant l'usinage suivant. Si vous renseignez le pas de filet du taraud dans la colonne Pitch du tableau d'outils, la commande compare le pas de filet inscrit dans le tableau d'outils avec celui qui est défini dans le cycle. La commande émet un message d'erreur si les valeurs ne concordent pas. Lors d'un taraudage, la broche et l'axe d'outil sont toujours synchronisés. La synchronisation peut se faire alors que la broche est à l'arrêt. Si vous ne modifiez pas les paramètres de dynamique (par ex. distance d'approche, vitesse de rotation broche,...), vous pourrez toujours effectuer le taraudage plus en profondeur ultérieurement. Il est toutefois recommandé de sélectionner la distance d'approche Q200 de manière à ce que l'axe d'outil quitte la course d'accélération dans la limite de cette course. Il est possible de procéder aux réglages suivants avec le paramètre CfgThreadSpindle (n°113600) : sourceOverride (n°113603) : FeedPotentiometer (par défaut) (le potentiomètre de vitesse de rotation n'est pas actif), la CN adapte ensuite la vitesse de rotation en conséquence à SpindlePotentiometer (potentiomètre d'avance non actif) et thrdWaitingTime (n°113601) : durée de la temporisation au fond du taraudage, après l'arrêt de la broche thrdPreSwitch (n°113602) : temporisation de la broche avant d'atteindre le fond du taraudage 132 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE AVEC BRISE-COPEAUX(cycle 209, DIN/ISO : G209, option 19) Paramètres du cycle Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q201 Profondeur de filetage? (en incrémental) : distance entre la surface de la pièce et le fond du filet. Plage de programmation : -99999,9999 à 99999,9999 Q239 Pas de vis? : pas du filet. Le signe détermine le sens du filet : + = filet à droite – = filet à gauche Plage de programmation : -99,9999 à +99,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q257 Prof. perç. pour brise-copeaux? (en incrémental) : passe après laquelle la commande exécute un brise-copeaux. Pas de brise-copeaux si l'on a indiqué 0. Plage de programmation : 0 à 99999,9999 Q256 Retrait avec brise-copeaux? : la commande multiplie le pas de Q239 par la valeur saisie et fait reculer l'outil de la valeur ainsi obtenue, lors du brise-copeaux. Si vous avez programmé Q256 = 0, la commande retire complètement l'outil du trou pour le débourrage (à la distance d'approche). Plage d'introduction 0,000 à 99999,999 Q336 Angle pour orientation broche? (en absolu) : angle auquel la commande positionne l'outil avant la procédure de filetage. Une reprise de taraudage est ainsi possible. Plage d'introduction -360,0000 à 360,0000 Q403 Facteur vit. rot. pour retrait? : facteur d'augmentation de la vitesse de rotation broche - et donc aussi de l'avance de retrait - par la commande, lors du retrait du perçage. Plage de programmation : 0,0001 à 10. Augmentation à la vitesse de rotation maximale de la gamme de broche active. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 26 CYCL DEF 209 TARAUD. BRISE-COP. Q200=2 ;DISTANCE D'APPROCHE Q201=-20 ;PROFONDEUR FILETAGE Q239=+1 ;PAS DE VIS Q203=+25 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q257=5 ;PROF.PERC.BRISE-COP. Q256=+1 ;RETR. BRISE-COPEAUX Q336=50 ;ANGLE BROCHE Q403=1.5 ;FACTEUR VIT. ROT. 133 5 Cycles d'usinage : taraudage / fraisage de filets | TARAUDAGE AVEC BRISE-COPEAUX(cycle 209, DIN/ISO : G209, option 19) Dégagement en cas d'interruption du programme Dégagement en mode Positionnement avec introduction manuelle Procédez comme suit : Appuyer sur la touche NC stop pour interrompre le filetage Appuyer sur la softkey pour le dégagement Appuyer sur NC start L'outil sort du trou et retourne au point de départ de l'usinage. La broche s'arrête automatiquement. La commande émet un message. Dégagement en mode Exécution de programme en continu et Exécution de programme pas-à-pas Procédez comme suit : Pour interrompre le programme, appuyer sur la touche NC stop Appuyer sur la softkey DEPLACEMENT MANUEL. Dégager l'outil le long de l'axe de broche Pour poursuivre le programme, appuyer sur la softkey APPROCHER POSITION Appuyer ensuite sur NC start La CN ramène l'outil à la position qu'il avait avant l'Stop CN. REMARQUE Attention, risque de collision ! Lors du dégagement, si vous déplacez par exemple l'outil dans le sens positif plutôt que dans le sens négatif, il existe un risque de collision. Vous avez la possibilité de dégager l'outil dans le sens négatif et dans le sens positif de l'axe d'outil. Avant le dégagement, vous devez décider délibérément du sens dans lequel l’outil doit être dégagé du trou percé. 134 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Cycles d'usinage : taraudage / fraisage de filets | Principes de base du fraisage de filets 5.5 Principes de base du fraisage de filets Conditions requises La machine est équipée d'un arrosage par la broche (liquide de coupe de 30 bar min, air comprimé de 6 bar min.). En général, lors du fraisage de filets, des distorsions apparaissent sur le profil du filet. Pour cette raison, il est nécessaire de connaître les corrections spécifiques à l'outil, en consultant le catalogue d'outils ou en interrogeant le fabricant d'outils (la correction s'effectue alors via le rayon delta DR, au moment du TOOL CALL). Les cycles 262, 263, 264 et 267 ne peuvent être utilisés qu'avec des outils à rotation vers la droite. Pour le cycle 265, vous pouvez installer des outils à rotation vers la droite et vers la gauche. Le sens de l'usinage résulte des paramètres de définition suivants : signe du pas de vis Q239 (+ = filet vers la droite /– = filet vers la gauche) et mode de fraisage Q351 (+1 = en avalant /–1 = en opposition) Pour des outils avec rotation à droite, le tableau suivant illustre la relation entre les paramètres de définition. Filetage intérieur Pas du filet Mode fraisage Sens usinage à droite + +1(RL) Z+ à gauche -- –1(RR) Z+ à droite + –1(RR) Z– à gauche -- +1(RL) Z– Filetage extérieur Pas du filet Mode fraisage Sens usinage à droite + +1(RL) Z– à gauche -- –1(RR) Z– à droite + –1(RR) Z+ à gauche -- +1(RL) Z+ REMARQUE Attention, risque de collision ! Une collision peut survenir si vous programmez les passes en profondeur avec des signes différents. Vous devez toujours programmer les profondeurs avec le même signe. Exemple : Si vous programmez le paramètre Q356 PROFONDEUR PLONGEE avec un signe négatif, vous devez alors aussi programmer le paramètre Q201 PROFONDEUR FILETAGE avec un signe négatif. Par exemple, si vous souhaitez uniquement répéter l’usinage d’un chanfrein dans un cycle, il est possible de programmer 0 pour la PROFONDEUR FILETAGE. Le sens d’usinage est alors déterminé par la PROFONDEUR PLONGEE. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 135 5 Cycles d'usinage : taraudage / fraisage de filets | Principes de base du fraisage de filets REMARQUE Attention, risque de collision ! Une collision peut survenir si, en cas de bris d’outil, vous ne déplacez l’outil que dans le sens de l’axe d’outil pour le dégager du trou. Interrompre l'exécution du programme en cas de bris d’outil Passer en mode Positionnement avec introduction manuelle Amener d'abord l’outil en direction du centre du trou en lui faisant suivre un mouvement linéaire Dégager l’outil dans le sens de l'axe d’outil Lors du fraisage de filet, l'avance programmée se réfère au tranchant de l'outil. Mais comme la commande affiche l'avance se référant à la trajectoire du centre, la valeur affichée diffère de la valeur programmée. L'orientation du filet change lorsque vous exécutez sur un seul axe un cycle de fraisage de filets en liaison avec le cycle 8 IMAGE MIROIR. 136 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : taraudage / fraisage de filets | FRAISAGE DE FILETS (cycle 262, DIN/ISO : G262, option 19) 5.6 FRAISAGE DE FILETS (cycle 262, DIN/ISO : G262, option 19) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche indiquée, au-dessus de la surface de la pièce, sur l'axe de la broche. 2 Avec l'avance de pré-positionnement programmée, l'outil se déplace sur le plan initial qui résulte du signe du pas de vis, du mode de fraisage ainsi que du nombre de filets par pas. 3 Puis, l'outil se déplace tangentiellement vers le diamètre nominal du filet en suivant une trajectoire hélicoïdale. Un déplacement de compensation dans l'axe d'outil est exécuté avant l'approche hélicoïdale pour débuter la trajectoire du filet à partir du plan initial programmé. 4 En fonction du paramètre Nombre de filets par pas, l'outil fraise le filet en exécutant un déplacement hélicoïdal, plusieurs déplacements hélicoïdaux décalés ou un déplacement hélicoïdal continu. 5 Puis, l’outil quitte le contour par tangentement pour retourner au point initial dans le plan d’usinage. 6 En fin de cycle, la commande déplace l'outil, en avance rapide, à la distance d'approche ou au saut de bride (si programmé). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 137 5 5 Cycles d'usinage : taraudage / fraisage de filets | FRAISAGE DE FILETS (cycle 262, DIN/ISO : G262, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Le signe du paramètre de cycle Profondeur de filetage détermine le sens de l’usinage. Si vous programmez une profondeur de filetage égale à 0, la commande n'exécute pas le cycle. Le mouvement d'approche du diamètre nominal du filet s'effectue selon un demi-cercle qui part du centre. Si le diamètre de l'outil est inférieur de 4 fois la valeur du pas de vis par rapport au diamètre nominal du filet, la TNC exécute un pré-positionnement latéral. Notez que la commande exécute un mouvement de compensation sur l'axe d'outil avant de procéder au mouvement d'approche. Le mouvement de compensation correspond au maximum à la moitié du pas de vis. Veiller à avoir un espace suffisant dans le trou ! Si vous modifiez la profondeur de filetage, la commande modifie automatiquement le point de départ du mouvement hélicoïdal. 138 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : taraudage / fraisage de filets | FRAISAGE DE FILETS (cycle 262, DIN/ISO : G262, option 19) Paramètres du cycle Q335 Diamètre nominal? : diamètre nominal du filet Plage de programmation : 0 à 99999,9999 Q239 Pas de vis? : pas du filet. Le signe détermine le sens du filet : + = filet à droite – = filet à gauche Plage de programmation : -99,9999 à +99,9999 Q201 Profondeur de filetage? (en incrémental) : distance entre la surface de la pièce et le fond du filet. Plage de programmation : -99999,9999 à 99999,9999 Q355 Nombre de filets par pas? : nombre de pas de filets de décalage de l'outil : 0 = une ligne hélicoïdale à la profondeur de filetage 1 = ligne hélicoïdale continue sur toute la longueur du filet >1 = plusieurs trajectoires hélicoïdales avec approche et sortie entre lesquelles la commande décale l'outil de Q355 fois le pas. Plage d'introduction 0 à 99999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 139 5 5 Cycles d'usinage : taraudage / fraisage de filets | FRAISAGE DE FILETS (cycle 262, DIN/ISO : G262, option 19) Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil lors de sa plongée dans la pièce ou de sa sortie de la pièce, en mm/min. Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage Le sens de rotation de la broche est pris en compte. +1 = Fraisage en avalant –1 = Fraisage en opposition (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO Q512 Avance d'approche? : vitesse de déplacement de l'outil lors de l'approche, en mm/ min. Pour les petits diamètres de taraudage, vous pouvez réduire le risque de bris d'outil en diminuant l'avance d'approche. Plage d’introduction 0 à 99999,999 ou FAUTO 140 Exemple 25 CYCL DEF 262 FRAISAGE DE FILETS Q335=10 ;DIAMETRE NOMINAL Q239=+1.5 ;PAS DE VIS Q201=-20 ;PROFONDEUR FILETAGE Q355=0 ;FILETS PAR PAS Q253=750 ;AVANCE PRE-POSIT. Q351=+1 ;MODE FRAISAGE Q200=2 ;DISTANCE D'APPROCHE Q203=+30 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q207=500 ;AVANCE FRAISAGE Q512=0 ;APPROCHE EN AVANCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE SUR UN TOUR (cycle 263, DIN/ISO : G263, option 19) 5.7 FILETAGE SUR UN TOUR (cycle 263, DIN/ISO : G263, option 19) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche indiquée, au-dessus de la surface de la pièce, sur l'axe de la broche. Chanfreiner 2 L'outil se déplace à la profondeur du chanfrein moins la distance d'approche avec l'avance de pré-positionnement. Il se déplace ensuite à la profondeur du chanfrein selon l'avance de chanfreinage. 3 Si vous avez programmé une distance d'approche latérale, la commande positionne l'outil tout de suite à la profondeur du chanfrein, suivant l'avance de pré-positionnement. 4 Ensuite, et selon les conditions de place, la commande sort l'outil du centre ou bien aborde en douceur le diamètre primitif par un pré-positionnement latéral et exécute un déplacement circulaire. Chanfrein frontal 5 L'outil se déplace à la profondeur du chanfrein frontal selon l'avance de pré-positionnement. 6 En partant du centre, la commande positionne l'outil à la valeur de décalage frontale en suivant un demi-cercle sans correction de rayon. Il exécute un déplacement circulaire avec l'avance de chanfreinage. 7 La commande ramène ensuite l'outil sur un demi-cercle, jusqu'au centre du trou. Fraisage de filets 8 La commande amène l'outil au plan de départ du filetage (déduit par le signe qui précède le pas de filet et par le type de fraisage), avec l'avance de pré-positionnement programmée. 9 L'outil se déplace ensuite selon une trajectoire hélicoïdale, tangentiellement au diamètre nominal du filet, et fraise le filet par un déplacement hélicoïdal sur 360°. 10 Puis l’outil quitte le contour par tangentement pour retourner au point initial dans le plan d’usinage. 11 En fin de cycle, la commande déplace l'outil, en avance rapide, à la distance d'approche ou au saut de bride (si programmé). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 141 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE SUR UN TOUR (cycle 263, DIN/ISO : G263, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Les signes des paramètres de cycles Profondeur de filetage, Profondeur du chanfrein ou du chanfrein frontal déterminent le sens d'usinage. Le sens d'usinage est déterminé dans l'ordre suivant : 1. Profondeur de filetage 2. Profondeur de chanfrein 3. Profondeur de chanfrein frontal Si vous avez programmé la valeur 0 à l'un des paramètres de profondeur, la commande n'exécutera pas cette étape d'usinage. Si un chanfrein frontal est souhaité, attribuez la valeur 0 au paramètre de profondeur pour le chanfrein. Programmez la profondeur de filetage égale à la profondeur du chanfrein soustrait d'au moins un tiers de pas du filet. 142 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE SUR UN TOUR (cycle 263, DIN/ISO : G263, option 19) Paramètres du cycle Q335 Diamètre nominal? : diamètre nominal du filet Plage de programmation : 0 à 99999,9999 Q239 Pas de vis? : pas du filet. Le signe détermine le sens du filet : + = filet à droite – = filet à gauche Plage de programmation : -99,9999 à +99,9999 Q201 Profondeur de filetage? (en incrémental) : distance entre la surface de la pièce et le fond du filet. Plage de programmation : -99999,9999 à 99999,9999 Q356 Profondeur de plongée? (en incrémental) : distance entre la surface de la pièce et la pointe de l'outil. Plage de programmation : -99999,9999 à 99999,9999 Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil lors de sa plongée dans la pièce ou de sa sortie de la pièce, en mm/min. Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage Le sens de rotation de la broche est pris en compte. +1 = Fraisage en avalant –1 = Fraisage en opposition (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q357 Distance d'approche latérale? (en incrémental) : distance entre la dent de l'outil et la paroi du trou. Plage de programmation : 0 à 99999,9999 Q358 Profondeur pour chanfrein? (en incrémental) : distance entre la surface de la pièce et la pointe de l'outil lors du chanfreinage frontal. Plage de programmation : -99999,9999 à 99999,9999 Q359 Décalage jusqu'au chanfrein? (en incrémental) : distance de décalage du centre d'outil par la commande, par rapport au centre du trou. Plage de programmation : 0 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 143 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE SUR UN TOUR (cycle 263, DIN/ISO : G263, option 19) Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q254 Avance de plongée? : vitesse de déplacement de l'outil lors du perçage en mm/ min Plage de programmation : 0 à 99999,9999 ou FAUTO, FU Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO Q512 Avance d'approche? : vitesse de déplacement de l'outil lors de l'approche, en mm/ min. Pour les petits diamètres de taraudage, vous pouvez réduire le risque de bris d'outil en diminuant l'avance d'approche. Plage d’introduction 0 à 99999,999 ou FAUTO Exemple 25 CYCL DEF 263 FILETAGE SUR UN TOUR Q335=10 Q239=+1.5 ;PAS DE VIS Q201=-16 ;PROFONDEUR FILETAGE Q356=-20 ;PROFONDEUR PLONGEE Q253=750 ;AVANCE PRE-POSIT. Q351=+1 ;MODE FRAISAGE Q200=2 ;DISTANCE D'APPROCHE Q357=0.2 ;DIST. APPR. LATERALE Q358=+0 ;PROF. POUR CHANFREIN Q359=+0 ;DECAL. JUSQ. CHANFR. Q203=+30 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q254=150 ;AVANCE PLONGEE Q207=500 ;AVANCE FRAISAGE Q512=0 144 ;DIAMETRE NOMINAL ;APPROCHE EN AVANCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE AVEC PERCAGE (cycle 264, DIN/ISO : G264, option 19) 5.8 FILETAGE AVEC PERCAGE (cycle 264, DIN/ISO : G264, option 19) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX, à la distance d'approche indiquée, au-dessus de la surface de la pièce, sur l'axe de la broche. Perçage 2 Suivant l'avance de plongée en profondeur programmée, l'outil perce jusqu'à la première profondeur de passe. 3 Si un brise-copeaux a été programmé, la commande retire l'outil de la valeur de retrait programmée. Si vous travaillez sans brisecopeaux, la commande ramène l'outil à la distance d'approche, en avance rapide, puis à la distance de sécurité, au-dessus de la première profondeur de passe, à nouveau en FMAX. 4 L'outil perce ensuite une autre profondeur de passe selon l'avance d'usinage. 5 La TNC répète cette procédure (2 à 4) jusqu'à ce que la profondeur de perçage soit atteinte. Chanfrein frontal 6 L'outil se déplace à la profondeur du chanfrein frontal selon l'avance de pré-positionnement. 7 En partant du centre, la commande positionne l'outil à la valeur de décalage frontale en suivant un demi-cercle sans correction de rayon. Il exécute un déplacement circulaire avec l'avance de chanfreinage. 8 La commande ramène ensuite l'outil sur un demi-cercle, jusqu'au centre du trou. Fraisage de filets 9 La commande amène l'outil au plan de départ du filetage (déduit par le signe qui précède le pas de filet et par le type de fraisage), avec l'avance de pré-positionnement programmée. 10 L'outil se déplace ensuite selon une trajectoire hélicoïdale, tangentiellement au diamètre nominal du filet, et fraise le filet par un déplacement hélicoïdal sur 360°. 11 Puis l’outil quitte le contour par tangentement pour retourner au point initial dans le plan d’usinage. 12 En fin de cycle, la commande déplace l'outil, en avance rapide, à la distance d'approche ou au saut de bride (si programmé). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 145 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE AVEC PERCAGE (cycle 264, DIN/ISO : G264, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Les signes des paramètres de cycles Profondeur de filetage, Profondeur du chanfrein ou du chanfrein frontal déterminent le sens d'usinage. Le sens d'usinage est déterminé dans l'ordre suivant : 1. Profondeur de filetage 2. Profondeur de chanfrein 3. Profondeur de chanfrein frontal Si vous avez programmé la valeur 0 à l'un des paramètres de profondeur, la commande n'exécutera pas cette étape d'usinage. Programmez la profondeur de filetage pour qu'elle soit égale au minimum à la profondeur de perçage moins un tiers de fois le pas de vis. 146 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE AVEC PERCAGE (cycle 264, DIN/ISO : G264, option 19) Paramètres du cycle Q335 Diamètre nominal? : diamètre nominal du filet Plage de programmation : 0 à 99999,9999 Q239 Pas de vis? : pas du filet. Le signe détermine le sens du filet : + = filet à droite – = filet à gauche Plage de programmation : -99,9999 à +99,9999 Q201 Profondeur de filetage? (en incrémental) : distance entre la surface de la pièce et le fond du filet. Plage de programmation : -99999,9999 à 99999,9999 Q356 Profondeur de perçage? (en incrémental) : distance entre la surface de la pièce et le fond du perçage. Plage de programmation : -99999,9999 à 99999,9999 Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil lors de sa plongée dans la pièce ou de sa sortie de la pièce, en mm/min. Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage Le sens de rotation de la broche est pris en compte. +1 = Fraisage en avalant –1 = Fraisage en opposition (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q202 Profondeur de plongée max.? (en incrémental) : la cote de chaque passe d'outil Q201 PROFONDEUR ne doit pas être un multiple de Q202. Plage de programmation : 0 à 99999,9999 La profondeur peut être un multiple de la profondeur de passe. La commande amène l'outil à la profondeur indiquée en une seule fois si : la profondeur de passe est égale à la profondeur la profondeur de passe est supérieure à la profondeur Q258 Distance de sécurité en haut? (en incrémental) : distance de sécurité pour le positionnement en avance rapide lorsque la commande ramène l'outil à la profondeur de passe actuelle après un retrait du trou. Plage de programmation : 0 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 25 CYCL DEF 264 FILETAGE AV. PERCAGE Q335=10 ;DIAMETRE NOMINAL Q239=+1.5 ;PAS DE VIS Q201=-16 ;PROFONDEUR FILETAGE Q356=-20 ;PROFONDEUR PERCAGE Q253=750 ;AVANCE PRE-POSIT. Q351=+1 ;MODE FRAISAGE Q202=5 ;PROFONDEUR DE PASSE Q258=0.2 ;DIST. SECUR. EN HAUT Q257=5 ;PROF.PERC.BRISE-COP. Q256=0.2 ;RETR. BRISE-COPEAUX Q358=+0 ;PROF. POUR CHANFREIN 147 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE AVEC PERCAGE (cycle 264, DIN/ISO : G264, option 19) Q257 Prof. perç. pour brise-copeaux? (en incrémental) : passe après laquelle la commande exécute un brise-copeaux. Pas de brise-copeaux si l'on a indiqué 0. Plage de programmation : 0 à 99999,9999 Q256 Retrait avec brise-copeaux? (en incrémental) : valeur de laquelle la commande retire l'outil en cas de brise-copeaux. Plage d'introduction 0,000 à 99999,999 Q358 Profondeur pour chanfrein? (en incrémental) : distance entre la surface de la pièce et la pointe de l'outil lors du chanfreinage frontal. Plage de programmation : -99999,9999 à 99999,9999 Q359 Décalage jusqu'au chanfrein? (en incrémental) : distance de décalage du centre d'outil par la commande, par rapport au centre du trou. Plage de programmation : 0 à 99999,9999 Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors de la plongée, en mm/min Plage d’introduction 0 à 99999,999 ou FAUTO, FU Q359=+0 ;DECAL. JUSQ. CHANFR. Q200=2 ;DISTANCE D'APPROCHE Q203=+30 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q206=150 ;AVANCE PLONGEE PROF. Q207=500 ;AVANCE FRAISAGE Q512=0 ;APPROCHE EN AVANCE Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO Q512 Avance d'approche? : vitesse de déplacement de l'outil lors de l'approche, en mm/ min. Pour les petits diamètres de taraudage, vous pouvez réduire le risque de bris d'outil en diminuant l'avance d'approche. Plage d’introduction 0 à 99999,999 ou FAUTO 148 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE AVEC PERCAGE HELICOIDAL (cycle 265, DIN/ISO : G265, option 19) 5.9 FILETAGE AVEC PERCAGE HELICOIDAL (cycle 265, DIN/ISO : G265, option 19) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche indiquée, au-dessus de la surface de la pièce, sur l'axe de la broche. Chanfrein frontal 2 Pour un chanfreinage avant l'usinage du filet, l'outil se déplace à la profondeur du chanfrein frontal selon l'avance de chanfreinage. Pour un chanfreinage après l'usinage du filet, l'outil se déplace à la profondeur du chanfrein selon l'avance de pré-positionnement. 3 En partant du centre, la commande positionne l'outil à la valeur de décalage frontale en suivant un demi-cercle sans correction de rayon. Il exécute un déplacement circulaire avec l'avance de chanfreinage. 4 La commande ramène ensuite l'outil sur un demi-cercle, jusqu'au centre du trou. Fraisage de filets 5 La TNC déplace l'outil avec l'avance de pré-positionnement programmée, jusqu'au plan de départ du filet. 6 L'outil se déplace ensuite tangentiellement vers le diamètre nominal du filet en décrivant une trajectoire hélicoïdale. 7 La commande déplace l'outil sur une trajectoire hélicoïdale continue, vers le bas, jusqu'à ce que la profondeur de filet soit atteinte. 8 Puis l’outil quitte le contour par tangentement pour retourner au point initial dans le plan d’usinage. 9 En fin de cycle, la commande déplace l'outil, en avance rapide, à la distance d'approche ou au saut de bride (si programmé). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 149 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE AVEC PERCAGE HELICOIDAL (cycle 265, DIN/ISO : G265, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point initial (centre du trou) dans le plan d’usinage, avec correction de rayon R0. Les signes des paramètres de cycles Profondeur de filetage ou du chanfrein frontal déterminent le sens de l'usinage. Le sens d'usinage est déterminé dans l'ordre suivant : 1. Profondeur de filetage 2. Profondeur de chanfrein frontal Si vous avez programmé la valeur 0 à l'un des paramètres de profondeur, la commande n'exécutera pas cette étape d'usinage. Si vous modifiez la profondeur de filetage, la commande modifie automatiquement le point de départ du mouvement hélicoïdal. Le type de fraisage (en avalant ou en opposition) est défini par le filet (filetage vers la droite ou vers la gauche) et le sens de rotation de l'outil, car seul le sens d'usinage allant de la surface de la pièce vers l'intérieur de la pièce est possible. 150 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE AVEC PERCAGE HELICOIDAL (cycle 265, DIN/ISO : G265, option 19) Paramètres du cycle Q335 Diamètre nominal? : diamètre nominal du filet Plage de programmation : 0 à 99999,9999 Q239 Pas de vis? : pas du filet. Le signe détermine le sens du filet : + = filet à droite – = filet à gauche Plage de programmation : -99,9999 à +99,9999 Q201 Profondeur de filetage? (en incrémental) : distance entre la surface de la pièce et le fond du filet. Plage de programmation : -99999,9999 à 99999,9999 Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil lors de sa plongée dans la pièce ou de sa sortie de la pièce, en mm/min. Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO Q358 Profondeur pour chanfrein? (en incrémental) : distance entre la surface de la pièce et la pointe de l'outil lors du chanfreinage frontal. Plage de programmation : -99999,9999 à 99999,9999 Q359 Décalage jusqu'au chanfrein? (en incrémental) : distance de décalage du centre d'outil par la commande, par rapport au centre du trou. Plage de programmation : 0 à 99999,9999 Q360 Procéd. plongée (avt/après:0/1)? : exécution d'un chanfrein 0 = avant l'usinage du filet 1 = après l'usinage du filet. Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 151 5 Cycles d'usinage : taraudage / fraisage de filets | FILETAGE AVEC PERCAGE HELICOIDAL (cycle 265, DIN/ISO : G265, option 19) Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q254 Avance de plongée? : vitesse de déplacement de l'outil lors du perçage en mm/ min Plage de programmation : 0 à 99999,9999 ou FAUTO, FU Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO Exemple 25 CYCL DEF 265 FILET. HEL. AV.PERC. Q335=10 ;DIAMETRE NOMINAL Q239=+1.5 ;PAS DE VIS Q201=-16 ;PROFONDEUR FILETAGE Q253=750 ;AVANCE PRE-POSIT. Q358=+0 ;PROF. POUR CHANFREIN Q359=+0 ;DECAL. JUSQ. CHANFR. Q360=0 ;PROCEDURE PLONGEE Q200=2 ;DISTANCE D'APPROCHE Q203=+30 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q254=150 ;AVANCE PLONGEE Q207=500 ;AVANCE FRAISAGE 152 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : taraudage / fraisage de filets | FRAISAGE DE FILET EXTERIEUR(cycle 267, DIN/ISO : G267, option 19) 5.10 FRAISAGE DE FILET EXTERIEUR(cycle 267, DIN/ISO : G267, option 19) Mode opératoire du cycle 1 La commande positionne l'outil en avance rapide FMAX à la distance d'approche indiquée, au-dessus de la surface de la pièce, sur l'axe de la broche. Chanfrein frontal 2 La commande aborde le point initial pour le chanfrein frontal en partant du centre du tenon, sur l'axe principal du plan d'usinage. La position du point de départ résulte du rayon du filet, du rayon d'outil et du pas de vis. 3 L'outil se déplace à la profondeur du chanfrein frontal selon l'avance de pré-positionnement. 4 En partant du centre, la commande positionne l'outil à la valeur de décalage frontale en suivant un demi-cercle sans correction de rayon. Il exécute un déplacement circulaire avec l'avance de chanfreinage. 5 La commande ramène ensuite l'outil sur un demi-cercle, jusqu'au point de départ. Fraisage de filets 6 La commande positionne l'outil au point de départ s'il n'y a pas eu de chanfreinage frontal au préalable. Point initial du filetage = point initial du chanfrein frontal 7 Avec l'avance de pré-positionnement programmée, l'outil se déplace sur le plan initial qui résulte du signe du pas de vis, du mode de fraisage ainsi que du nombre de filets par pas. 8 L'outil se déplace ensuite tangentiellement vers le diamètre nominal du filet en décrivant une trajectoire hélicoïdale. 9 En fonction du paramètre Nombre de filets par pas, l'outil fraise le filet en exécutant un déplacement hélicoïdal, plusieurs déplacements hélicoïdaux décalés ou un déplacement hélicoïdal continu. 10 Puis l’outil quitte le contour par tangentement pour retourner au point initial dans le plan d’usinage. 11 En fin de cycle, la commande déplace l'outil, en avance rapide, à la distance d'approche ou au saut de bride (si programmé). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 153 5 5 Cycles d'usinage : taraudage / fraisage de filets | FRAISAGE DE FILET EXTERIEUR(cycle 267, DIN/ISO : G267, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Programmer la séquence de positionnement au point de départ (centre du tenon) du plan d'usinage avec la correction de rayon R0. Le décalage nécessaire pour le chanfrein frontal doit être préalablement calculé. Vous devez indiquer la distance entre le centre du tenon et le centre de l'outil (valeur non corrigée). Les signes des paramètres de cycles Profondeur de filetage ou du chanfrein frontal déterminent le sens de l'usinage. Le sens d'usinage est déterminé dans l'ordre suivant : 1. Profondeur de filetage 2. Profondeur de chanfrein frontal Si vous avez programmé la valeur 0 à l'un des paramètres de profondeur, la commande n'exécutera pas cette étape d'usinage. Le signe du paramètre de cycle Profondeur de filetage détermine le sens de l’usinage. 154 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : taraudage / fraisage de filets | FRAISAGE DE FILET EXTERIEUR(cycle 267, DIN/ISO : G267, option 19) Paramètres du cycle Q335 Diamètre nominal? : diamètre nominal du filet Plage de programmation : 0 à 99999,9999 Q239 Pas de vis? : pas du filet. Le signe détermine le sens du filet : + = filet à droite – = filet à gauche Plage de programmation : -99,9999 à +99,9999 Q201 Profondeur de filetage? (en incrémental) : distance entre la surface de la pièce et le fond du filet. Plage de programmation : -99999,9999 à 99999,9999 Q355 Nombre de filets par pas? : nombre de pas de filets de décalage de l'outil : 0 = une ligne hélicoïdale à la profondeur de filetage 1 = ligne hélicoïdale continue sur toute la longueur du filet >1 = plusieurs trajectoires hélicoïdales avec approche et sortie entre lesquelles la commande décale l'outil de Q355 fois le pas. Plage d'introduction 0 à 99999 Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil lors de sa plongée dans la pièce ou de sa sortie de la pièce, en mm/min. Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage Le sens de rotation de la broche est pris en compte. +1 = Fraisage en avalant –1 = Fraisage en opposition (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 155 5 5 Cycles d'usinage : taraudage / fraisage de filets | FRAISAGE DE FILET EXTERIEUR(cycle 267, DIN/ISO : G267, option 19) Q358 Profondeur pour chanfrein? (en incrémental) : distance entre la surface de la pièce et la pointe de l'outil lors du chanfreinage frontal. Plage de programmation : -99999,9999 à 99999,9999 Q359 Décalage jusqu'au chanfrein? (en incrémental) : distance de décalage du centre d'outil par la commande, par rapport au centre du trou. Plage de programmation : 0 à 99999,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q254 Avance de plongée? : vitesse de déplacement de l'outil lors du perçage en mm/ min Plage de programmation : 0 à 99999,9999 ou FAUTO, FU Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO Q512 Avance d'approche? : vitesse de déplacement de l'outil lors de l'approche, en mm/ min. Pour les petits diamètres de taraudage, vous pouvez réduire le risque de bris d'outil en diminuant l'avance d'approche. Plage d’introduction 0 à 99999,999 ou FAUTO Exemple 25 CYCL DEF 267 FILET.EXT. SUR TENON Q335=10 ;DIAMETRE NOMINAL Q239=+1.5 ;PAS DE VIS Q201=-20 ;PROFONDEUR FILETAGE Q355=0 ;FILETS PAR PAS Q253=750 ;AVANCE PRE-POSIT. Q351=+1 ;MODE FRAISAGE Q200=2 ;DISTANCE D'APPROCHE Q358=+0 ;PROF. POUR CHANFREIN Q359=+0 ;DECAL. JUSQ. CHANFR. Q203=+30 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q254=150 ;AVANCE PLONGEE Q207=500 ;AVANCE FRAISAGE Q512=0 156 ;APPROCHE EN AVANCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 5 Cycles d'usinage : taraudage / fraisage de filets | Exemples de programmation 5.11 Exemples de programmation Exemple : Taraudage Les coordonnées du perçage sont mémorisées dans le tableau de points TAB1.PNT et sont appelées avec CYCL CALL PAT. Les rayons d'outils sont sélectionnés de telle sorte que toutes les étapes d'usinage sont visibles dans le graphique de test. Déroulement du programme Centrage Perçage Taraudage 0 BEGIN PGM 1 MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-20 Définition de la pièce brute 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S5000 Appel de l'outil : Foret à centrer 4 L Z+10 R0 F5000 Amener l'outil à une hauteur de sécurité (programmer F avec une valeur). La commande positionne l'outil à la hauteur de sécurité à la fin de chaque cycle. 5 SEL PATTERN "TAB1" Définition du tableau de points 6 CYCL DEF 240 CENTRAGE Définition du cycle Centrage Q200=2 ;DISTANCE D'APPROCHE Q343=1 ;CHOIX DIAM./PROFOND. Q201=-3.5 ;PROFONDEUR Q344=-7 ;DIAMETRE Q206=150 ;AVANCE PLONGEE PROF. Q11=0 ;TEMPO. AU FOND Q203=+0 ;COORD. SURFACE PIECE Valeur 0 obligatoire, agit depuis le tableau de points Q204=0 ;SAUT DE BRIDE Valeur 0 obligatoire, agit depuis le tableau de points 10 CYCL CALL PAT F5000 M3 Appel du cycle en lien avec le tableau de points TAB1.PNT, avance entre les points : 5000 mm/min 11 L Z+100 R0 FMAX M6 Dégagement de l'outil 12 TOOL CALL 2 Z S5000 Appel d'outil : foret 13 L Z+10 R0 F5000 Déplacer l'outil à la hauteur de sécurité (programmer F avec valeur) 14 CYCL DEF 200 PERCAGE Définition du cycle Perçage Q200=2 ;DISTANCE D'APPROCHE Q201=-25 ;PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 157 5 Cycles d'usinage : taraudage / fraisage de filets | Exemples de programmation Q202=5 ;PROFONDEUR DE PASSE Q210=0 ;TEMPO. EN HAUT Q203=+0 ;COORD. SURFACE PIECE Valeur 0 obligatoire, agit depuis le tableau de points Q204=0 ;SAUT DE BRIDE Valeur 0 obligatoire, agit depuis le tableau de points Q211=0.2 ;TEMPO. AU FOND Q395=0 ;REFERENCE PROFONDEUR 15 CYCL CALL PAT F5000 M3 Appel de cycle en lien avec un tableau de points TAB1.PNT 16 L Z+100 R0 FMAX M6 Dégagement de l'outil 17 TOOL CALL 3 Z S200 Appel de l'outil Foret à centrer 18 L Z+50 R0 FMAX Déplacer l'outil à la hauteur de sécurité 19 CYCL DEF 206 TARAUDAGE Définition du cycle Taraudage Q200=2 ;DISTANCE D'APPROCHE Q201=-25 ;PROFONDEUR FILETAGE Q206=150 ;AVANCE PLONGEE PROF. Q211=0 ;TEMPO. AU FOND Q203=+0 ;COORD. SURFACE PIECE Valeur 0 obligatoire, agit depuis le tableau de points Q204=0 ;SAUT DE BRIDE Valeur 0 obligatoire, agit depuis le tableau de points 20 CYCL CALL PAT F5000 M3 Appel de cycle en lien avec un tableau de points TAB1.PNT 21 L Z+100 R0 FMAX M2 Dégagement de l'outil, fin du programme 22 END PGM 1 MM Tableau de points TAB1. PNT TAB1. PNT MM NR X Y Z 0 +10 +10 +0 1 +40 +30 +0 2 +90 +10 +0 3 +80 +30 +0 4 +80 +65 +0 5 +90 +90 +0 6 +10 +90 +0 7 +20 +55 +0 [END] 158 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | Principes de base 6.1 Principes de base Vue d'ensemble La commande propose les cycles suivants pour l'usinage de poches, de tenons et de rainures : Softkey 160 Cycle Page 251 POCHE RECTANGULAIRE Cycle d'ébauche et de finition avec choix des opérations d'usinage et plongée hélicoïdale 161 252 POCHE CIRCULAIRE Cycle d'ébauche et de finition avec choix des opérations d'usinage et plongée hélicoïdale 167 253 RAINURAGE Cycle d'ébauche et de finition avec choix des opérations d'usinage et plongée pendulaire 174 254 RAINURE CIRCULAIRE Cycle d'ébauche et de finition avec choix des opérations d'usinage et plongée pendulaire 179 256 TENON RECTANGULAIRE Cycle d'ébauche et de finition avec passe latérale si plusieurs tours sont nécessaires 185 257 TENON CIRCULAIRE Cycle d'ébauche et de finition avec passe latérale si plusieurs passes sont nécessaires 190 258 TENON POLYGONAL Cycle d'ébauche et de finition permettant de réaliser un polygone régulier 194 233 SURFAÇAGE Surface transversale comptant jusqu'à trois limites 200 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE RECTANGULAIRE (cycle 251, DIN/ISO : G251, option 19) 6.2 POCHE RECTANGULAIRE (cycle 251, DIN/ISO : G251, option 19) Mode opératoire du cycle Le cycle de poche rectangulaire 251 vous permet d'usiner intégralement une poche rectangulaire. En fonction des paramètres du cycle, vous disposez des alternatives d'usinage suivantes : Usinage intégral : ébauche, finition en profondeur, finition latérale Seulement ébauche Seulement finition de profondeur et finition latérale Seulement finition de profondeur Seulement finition latérale Ebauche 1 L'outil plonge dans la pièce, au centre de la poche, et se déplace à la première profondeur de passe. La stratégie de plongée est à définir au paramètre Q366. 2 La CN évide la poche de l'intérieur vers l'extérieur, en tenant compte du recouvrement de trajectoire (Q370) et des surépaisseurs de finition (Q368 et Q369). 3 A la fin de la procédure d'évidement, la commande dégage l'outil de la paroi de la poche de manière tangentielle, l'amène à la distance d'approche au-dessus de la profondeur de passe actuelle, puis jusqu'au centre de la poche en avance rapide. A partir de là, l'outil est ramené au centre de la poche en avance rapide. 4 Ce processus est répété jusqu'à ce que la profondeur programmée pour la poche soit atteinte. Finition 5 Si des surépaisseurs de finition sont définies, l'outil effectue une plongée et approche du contour. Le mouvement d'approche s'effectue selon un rayon qui permet une approche en douceur. La commande commence par la finition de la paroi de la poche, en plusieurs passe (si programmé ainsi). 6 La commande effectue ensuite la finition du fond de la poche de l'intérieur vers l'extérieur. Le fond de la poche est accostée de manière tangentielle. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 161 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE RECTANGULAIRE (cycle 251, DIN/ISO : G251, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive REMARQUE Attention, risque de collision ! Si vous appelez le cycle avec la stratégie d'usinage 2 (finition uniquement), alors le pré-positionnement à la première profondeur de passe et le déplacement à la distance d'approche seront exécutés en avance rapide. Il existe un risque de collision lors du positionnement en avance rapide. Effectuer une opération d'ébauche au préalable Veiller à ce que la commande puisse prépositionner l'outil en avance rapide sans entrer en collision avec la pièce 162 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE RECTANGULAIRE (cycle 251, DIN/ISO : G251, option 19) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Si le tableau d'outils est inactif, vous devez toujours plonger perpendiculairement (Q366=0) car vous ne pouvez pas définir l'angle de plongée. Veillez à définir votre pièce brute avec des cotes suffisamment grandes si la position de la rotation Q224 est différente de 0. Pré-positionner l'outil à la position initiale dans le plan d'usinage, avec correction de rayon R0. Tenir compte du paramètre Q367 (position). La commande pré-positionne automatiquement l'outil sur l'axe d'outil. Tenir compte de Q204 SAUT DE BRIDE. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Programmer la distance d'approche de manière à ce que l'outil puisse se déplacer sans être bloqué par d'éventuels copeaux. Lors de la plongée hélicoïdale, la commande délivre un message d'erreur si le diamètre de l'hélice calculé en interne est inférieur à deux fois le diamètre de l'outil. Si vous utilisez un outil dont le tranchant se trouve au centre, vous pouvez désactiver ce contrôle avec le paramètre suppressPlungeErr (n°201006). La commande réduit la profondeur de passe à la longueur de coupe LCUTS définie dans le tableau d'outils si cette dernière est inférieure à la profondeur de passe définie dans le cycle Q202. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 163 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE RECTANGULAIRE (cycle 251, DIN/ISO : G251, option 19) Paramètres du cycle Q215 Opérations d'usinage (0/1/2)? : définir les opérations d'usinage : 0 : ébauche et finition 1 : ébauche uniquement 2 : finition uniquement La finition latérale et la finition en profondeur ne sont exécutées que si la surépaisseur de finition correspondante (Q368, Q369) est définie. Q218 Longueur premier côté? (en incrémental) : longueur de la poche, parallèlement à l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q219 Longueur second côté? (en incrémental) : longueur de la poche parallèlement à l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q220 Rayon d'angle? : rayon de l'angle de la poche. Si vous avez programmé 0, la commande considère que le rayon d'angle est égal au rayon d'outil. Plage de programmation : 0 à 99999,9999 Q368 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : 0 à 99999,9999 Q224 Position angulaire? (en absolu) : angle de rotation pour tout l'usinage. Le centre de rotation est situé à la position à laquelle se trouve l'outil lors de l'appel du cycle. Plage de programmation : -360,0000 à 360,0000 Q367 Position poche (0/1/2/3/4)? : position de la poche par rapport à la position de l'outil lors de l'appel de cycle : 0 : position de l'outil = centre de la poche 1 : position de l'outil = coin inférieur gauche 2 : position de l'outil = coin inférieur droit 3 : position de l'outil = coin supérieur droit 4 : position de l'outil = coin supérieur gauche Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage. Le sens de rotation de la broche est pris en compte : +1 = fraisage en avalant –1 = fraisage en opposition PREDEF : la CN utilise la valeur de la séquence GLOBAL DEF. (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du trou. Plage de programmation : -99999,9999 à 99999,9999 164 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE RECTANGULAIRE (cycle 251, DIN/ISO : G251, option 19) Q202 Profondeur de passe? (en incrémental) : distance parcourue par l'outil en une passe ; la valeur doit être supérieure à 0. Plage de programmation : 0 à 99999,9999 Q369 Surep. finition en profondeur? (en incrémental) : surépaisseur de finition pour la profondeur. Plage de programmation : 0 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lorsqu'il approche de la profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ Q338 Passe de finition? (en incrémental) : cote de la passe de finition de l'outil sur l'axe de la broche. Q338=0: finition en une seule passe. Plage de programmation : 0 à 99999,9999 Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce Plage de saisie 0 à 99999,9999, sinon PREDEF Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de saisie 0 à 99999,9999, sinon PREDEF Exemple 8 CYCL DEF 251 POCHE RECTANGULAIRE Q215=0 ;OPERATIONS D'USINAGE Q218=80 ;1ER COTE Q219=60 ;2EME COTE Q220=5 ;RAYON D'ANGLE Q368=0.2 ;SUREPAIS. LATERALE Q224=+0 ;POSITION ANGULAIRE Q367=0 ;POSITION POCHE Q207=500 ;AVANCE FRAISAGE Q351=+1 ;MODE FRAISAGE Q201=-20 ;PROFONDEUR Q370 Facteur de recouvrement? : Q370 x le rayon de l'outil donne la passe latérale k. Plage de programmation : 0,0001 à 1,9999 sinon PREDEF Q202=5 ;PROFONDEUR DE PASSE Q369=0.1 ;SUREP. DE PROFONDEUR Q366 Stratégie de plongée (0/1/2)? : type de stratégie de plongée : 0 : plongée verticale. La commande fait plonger l'outil verticalement, et ce indépendamment de l'angle de plongée ANGLE défini dans le tableau d'outils. 1 : plongée hélicoïdale. Dans le tableau d'outils, l'angle de plongée de l'outil actif ANGLE doit être différent de 0. Sinon, la commande émet un message d'erreur. 2 : plongée pendulaire. Dans le tableau d'outils, l'angle de plongée de l'outil actif ANGLE doit être différent de 0. Sinon, la commande émet un message d'erreur. La longueur pendulaire dépend de l'angle de plongée. La commande utilise le double du diamètre d'outil comme valeur minimale PREDEF : la commande utilise la valeur de la séquence GLOBAL DEF Q206=150 ;AVANCE PLONGEE PROF. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q338=5 ;PASSE DE FINITION Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q370=1 ;FACTEUR RECOUVREMENT Q366=1 ;PLONGEE Q385=500 ;AVANCE DE FINITION Q439=0 ;REFERENCE AVANCE 9 L x+50 y+50 R0 fmax m3 m99 165 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE RECTANGULAIRE (cycle 251, DIN/ISO : G251, option 19) Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la finition latérale et en profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ Q439 Référence de l'avance (0-3) ? : vous définissez ici à quoi se réfère l'avance programmée : 0 : l'avance se réfère à la trajectoire du centre de l'outil 1 : l'avance se réfère uniquement au tranchant de l'outil lors de la finition latérale, sinon à la trajectoire du centre de l'outil 2 : l'avance se réfère à la finition latérale et à la finition en profondeur de la trajectoire du centre de l'outil 3 : l'avance se réfère toujours au tranchant de l'outil 166 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE CIRCULAIRE (cycle 252, DIN/ISO : G251, option 19) 6.3 POCHE CIRCULAIRE (cycle 252, DIN/ISO : G251, option 19) Mode opératoire du cycle Le cycle 252 Poche circulaire vous permet d'usiner une poche circulaire. En fonction des paramètres du cycle, vous disposez des alternatives d'usinage suivantes : Usinage intégral : ébauche, finition en profondeur, finition latérale Seulement ébauche Seulement finition en profondeur et finition latérale Seulement finition en profondeur Seulement finition latérale Ebauche 1 La commande déplace d'abord l'outil en avance rapide jusqu'à la distance d'approche Q200, au-dessus de la pièce. 2 L'outil plonge au centre de la poche, à la valeur de profondeur de la passe. La stratégie de plongée est à définir au paramètre Q366. 3 La CN évide la poche de l'intérieur vers l'extérieur, en tenant compte du recouvrement de trajectoire (Q370) et des surépaisseurs de finition (Q368 et Q369). 4 A la fin de la procédure d'évidement, la CN éloigne l'outil de la paroi de la poche de manière tangentielle, de la valeur de la distance d'approche Q200, dans le plan d'usinage, puis le relève de la valeur de Q200, avant de le ramener en avance rapide au centre de la poche. 5 Les étapes 2 à 4 se répètent jusqu'à ce que la profondeur de poche programmée soit atteinte. La surépaisseur de finition Q369 est alors prise en compte. 6 Si vous n'avez programmé que l'ébauche (Q215=1), l'outil se dégage de la paroi de la poche de manière tangentielle, en avance rapide dans l'axe d'outil, jusqu'à atteindre la distance d'approche Q200, puis effectue un saut de bride Q204 avant de revenir en avance rapide au centre de la poche. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 167 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE CIRCULAIRE (cycle 252, DIN/ISO : G251, option 19) Finition 1 Si des surépaisseurs de finition sont définies, la commande exécute tout d'abord la finition des parois de la poche, et ce en plusieurs passes si celles-ci ont été programmées. 2 La commande place l'outil dans l'axe d'outil, à une position qui se trouve au niveau de la surépaisseur de finition Q368 et à la distance d'approche Q200 par rapport à la paroi de la poche. 3 La commande évide la poche de l'intérieur vers l'extérieur, au diamètre Q223. 4 La commande place ensuite à nouveau l'outil dans l'axe d'outil, à une position qui se trouve éloignée de la surépaisseur de finition Q368 et de la distance d'approche Q200 par rapport à la paroi de la poche. Après quoi, elle répète l'opération de finition de la paroi latérale à cette nouvelle profondeur. 5 La commande répète cette procédure jusqu'à ce que le diamètre programmé soit usiné. 6 Une fois le diamètre Q223 réalisé, la commande ramène l'outil, de manière tangentielle, de la valeur de la surépaisseur de finition Q368 plus la valeur de la distance d'approche Q200, dans le plan d'usinage, puis elle déplace l'outil en avance rapide à la distance d'approche Q200 en avance rapide avant de le positionner au centre de la poche. 7 Pour terminer, la commande amène l'outil à la profondeur Q201 sur l'axe d'outil et effectue la finition du fond de la poche de l'intérieur vers l'extérieur. Le fond de la poche est pour cela approché de manière tangentielle. 8 La commande répète cette procédure jusqu'à ce que la profondeur Q201 plus Q369 soit atteinte. 9 Pour finir, l'outil se dégage de la paroi de la poche de manière tangentielle, de la valeur de la distance d'approche Q200, se retire à la distance d'approche Q200 en avance rapide, dans l'axe d'outil, puis revient en avance rapide au centre de la poche. 168 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE CIRCULAIRE (cycle 252, DIN/ISO : G251, option 19) Attention lors de la programmation! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive REMARQUE Attention, risque de collision ! Si vous appelez le cycle avec la stratégie d'usinage 2 (finition uniquement), alors le pré-positionnement à la première profondeur de passe et le déplacement à la distance d'approche seront exécutés en avance rapide. Il existe un risque de collision lors du positionnement en avance rapide. Effectuer une opération d'ébauche au préalable Veiller à ce que la commande puisse prépositionner l'outil en avance rapide sans entrer en collision avec la pièce HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 169 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE CIRCULAIRE (cycle 252, DIN/ISO : G251, option 19) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Si le tableau d'outils est inactif, vous devez toujours plonger perpendiculairement (Q366=0) car vous ne pouvez pas définir l'angle de plongée. Pré-positionner l'outil à la position initiale (centre du cercle) dans le plan d'usinage, avec correction de rayon R0. La commande pré-positionne automatiquement l'outil sur l'axe d'outil. Tenir compte de Q204 SAUT DE BRIDE. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Programmer la distance d'approche de manière à ce que l'outil puisse se déplacer sans être bloqué par d'éventuels copeaux. Lors de la plongée hélicoïdale, la commande délivre un message d'erreur si le diamètre de l'hélice calculé en interne est inférieur à deux fois le diamètre de l'outil. Si vous utilisez un outil dont le tranchant se trouve au centre, vous pouvez désactiver ce contrôle avec le paramètre suppressPlungeErr (n°201006). La commande réduit la profondeur de passe à la longueur de coupe LCUTS définie dans le tableau d'outils si cette dernière est inférieure à la profondeur de passe définie dans le cycle Q202. 170 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE CIRCULAIRE (cycle 252, DIN/ISO : G251, option 19) Paramètres du cycle Q215 Opérations d'usinage (0/1/2)? : définir les opérations d'usinage : 0 : ébauche et finition 1 : ébauche uniquement 2 : finition uniquement La finition latérale et la finition en profondeur ne sont exécutées que si la surépaisseur de finition correspondante (Q368, Q369) est définie. Q223 Diamètre du cercle? : diamètre de la poche à l’issue de la finition Plage de programmation : 0 à 99999,9999 Q368 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : 0 à 99999,9999 Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage. Le sens de rotation de la broche est pris en compte : +1 = fraisage en avalant –1 = fraisage en opposition PREDEF : la CN utilise la valeur de la séquence GLOBAL DEF. (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du trou. Plage de programmation : -99999,9999 à 99999,9999 Q202 Profondeur de passe? (en incrémental) : distance parcourue par l'outil en une passe ; la valeur doit être supérieure à 0. Plage de programmation : 0 à 99999,9999 Q369 Surep. finition en profondeur? (en incrémental) : surépaisseur de finition pour la profondeur. Plage de programmation : 0 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lorsqu'il approche de la profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 8 CYCL DEF 252 POCHE CIRCULAIRE Q215=0 ;OPERATIONS D'USINAGE 171 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE CIRCULAIRE (cycle 252, DIN/ISO : G251, option 19) Q338 Passe de finition? (en incrémental) : cote de la passe de finition de l'outil sur l'axe de la broche. Q338=0: finition en une seule passe. Plage de programmation : 0 à 99999,9999 Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce Plage de saisie 0 à 99999,9999, sinon PREDEF Q223=60 ;DIAMETRE DU CERCLE Q368=0.2 ;SUREPAIS. LATERALE Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de saisie 0 à 99999,9999, sinon PREDEF Q370 Facteur de recouvrement? : Q370 x rayon d'outil permet d'obtenir la passe latérale k. Le recouvrement est considéré comme recouvrement maximal. Pour éviter qu'il ne reste de la matière dans les coins, il est possible de réduire le recouvrement. Plage de saisie 0,1 à 1,9999, sinon PREDEF Q207=500 ;AVANCE FRAISAGE Q351=+1 ;MODE FRAISAGE Q201=-20 ;PROFONDEUR Q202=5 ;PROFONDEUR DE PASSE Q369=0.1 ;SUREP. DE PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q338=5 ;PASSE DE FINITION Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q370=1 ;FACTEUR RECOUVREMENT Q366=1 ;PLONGEE Q385=500 ;AVANCE DE FINITION Q439=3 ;REFERENCE AVANCE 9 L X+50 Y+50 R0 FMAX M3 M99 Q366 Stratégie de plongée (0/1)? : type de stratégie de plongée : 0 = plongée verticale. Dans le tableau d'outils, l'angle de plongée de l'outil actif ANGLE doit également être égal à 0 ou 90. Sinon, la commande émet un message d'erreur. 1 = plongée hélicoïdale. Dans le tableau d'outils, l'angle de plongée de l'outil actif ANGLE doit être différent de 0. Sinon, la commande émet un message d'erreur. Sinon PREDEF 172 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | POCHE CIRCULAIRE (cycle 252, DIN/ISO : G251, option 19) Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la finition latérale et en profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ Q439 Référence de l'avance (0-3) ? : vous définissez ici à quoi se réfère l'avance programmée : 0 : l'avance se réfère à la trajectoire du centre de l'outil 1 : l'avance se réfère uniquement au tranchant de l'outil lors de la finition latérale, sinon à la trajectoire du centre de l'outil 2 : l'avance se réfère à la finition latérale et à la finition en profondeur de la trajectoire du centre de l'outil 3 : l'avance se réfère toujours au tranchant de l'outil HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 173 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | FRAISAGE DE RAINURES (cycle 253, DIN/ISO : G253, option 19) 6.4 FRAISAGE DE RAINURES (cycle 253, DIN/ISO : G253, option 19) Mode opératoire du cycle Le cycle 253 permet d'usiner entièrement une rainure. En fonction des paramètres du cycle, vous disposez des alternatives d'usinage suivantes : Usinage intégral : ébauche, finition en profondeur, finition latérale Seulement ébauche Seulement finition en profondeur et finition latérale Seulement finition en profondeur Seulement finition latérale Ebauche 1 Partant du centre du cercle de la rainure à gauche, l'outil effectue un déplacement pendulaire en fonction de l'angle de plongée défini dans le tableau d'outils et ce, jusqu'à la première profondeur de passe. La stratégie de plongée est à définir au paramètre Q366. 2 La CN évide la rainure de l'intérieur vers l'extérieur, en tenant compte des surépaisseurs de finition (Q368 et Q369). 3 La commande retire l'outil de la valeur de la distance de sécurité Q200. Si la largeur de la rainure correspond au diamètre de fraisage, la commande positionne l'outil en dehors de la rainure à chaque passe. 4 Ce processus est répété jusqu'à ce que la profondeur programmée pour la rainure soit atteinte. Finition 5 Si des surépaisseurs de finition sont définies, la commande exécute tout d'abord la finition des parois de la rainure, et ce en plusieurs passes si celles-ci ont été programmées. Accostage tangentiel de la paroi dans l'arc de cercle de la rainure, à gauche 6 La commande effectue ensuite la finition du fond de la rainure, de l'intérieur vers l'extérieur. 174 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | FRAISAGE DE RAINURES (cycle 253, DIN/ISO : G253, option 19) Attention lors de la programmation! REMARQUE Attention, risque de collision ! Si vous avez programmé une position de rainure différente de 0, la commande positionne l'outil uniquement au saut de bride, dans l'axe d'outil. Cela signifie que la position en fin de cycle n'a pas besoin de correspondre à la position de début de cycle ! Ne programmez pas de cotes incrémentales à la suite du cycle. A la fin du cycle, programmez une position absolue sur tous les axes principaux REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Si le tableau d'outils est inactif, vous devez toujours plonger perpendiculairement (Q366=0) car vous ne pouvez pas définir l'angle de plongée. Pré-positionner l'outil à la position initiale dans le plan d'usinage, avec correction de rayon R0. Tenir compte du paramètre Q367 (position). La commande pré-positionne automatiquement l'outil sur l'axe d'outil. Tenir compte de Q204 SAUT DE BRIDE. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Si la largeur de la rainure est supérieure au double du diamètre de l'outil, la commande évide alors la rainure de l'intérieur vers l'extérieur. Vous pouvez donc exécuter le fraisage de n'importe quelles rainures avec de petits outils. La commande réduit la profondeur de passe à la longueur de coupe LCUTS définie dans le tableau d'outils si cette dernière est inférieure à la profondeur de passe définie dans le cycle Q202. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 175 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | FRAISAGE DE RAINURES (cycle 253, DIN/ISO : G253, option 19) Paramètres du cycle Q215 Opérations d'usinage (0/1/2)? : définir les opérations d'usinage : 0 : ébauche et finition 1 : ébauche uniquement 2 : finition uniquement La finition latérale et la finition en profondeur ne sont exécutées que si la surépaisseur de finition correspondante (Q368, Q369) est définie. Q218 Longueur de la rainure? (valeur parallèle à l'axe principal du plan d'usinage) : entrer le côté le plus long de la rainure. Plage de programmation : 0 à 99999,9999 Q219 Largeur de la rainure? (valeur parallèle à l'axe auxiliaire du plan d'usinage) : entrer la largeur de la rainure ; si la largeur de la rainure est égale au diamètre de l'outil, la commande se contente de réaliser l'ébauche (fraisage d'un trou oblong). La largeur maximale de la rainure lors de l'ébauche équivaut à deux fois le diamètre de l'outil. Plage de programmation : 0 à 99999,9999 Q368 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : 0 à 99999,9999 Q374 Position angulaire? (en absolu) : angle de rotation de l'ensemble de la rainure. Le centre de rotation est situé à la position à laquelle se trouve l'outil lors de l'appel du cycle. Plage de programmation : -360,000 à 360,000 Q367 Position rainure (0/1/2/3/4)? : position de la rainure par rapport à la position de l'outil lors de l'appel de cycle : 0 : position de l'outil = centre de la rainure 1 : position de l'outil = extrémité gauche de la rainure 2 : position de l'outil = centre du cercle de rainure gauche 3: position de l'outil = centre du cercle de rainure droit 4 : position d'outil = extrémité droite de la rainure Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage. Le sens de rotation de la broche est pris en compte : +1 = fraisage en avalant –1 = fraisage en opposition PREDEF : la CN utilise la valeur de la séquence GLOBAL DEF. (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) 176 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | FRAISAGE DE RAINURES (cycle 253, DIN/ISO : G253, option 19) Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond de la rainure Plage de programmation : -99999,9999 à 99999,9999 Q202 Profondeur de passe? (en incrémental) : distance parcourue par l'outil en une passe ; la valeur doit être supérieure à 0. Plage de programmation : 0 à 99999,9999 Q369 Surep. finition en profondeur? (en incrémental) : surépaisseur de finition pour la profondeur. Plage de programmation : 0 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lorsqu'il approche de la profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ Q338 Passe de finition? (en incrémental) : cote de la passe de finition de l'outil sur l'axe de la broche. Q338=0: finition en une seule passe. Plage de programmation : 0 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 8 CYCL DEF 253 RAINURAGE Q215=0 ;OPERATIONS D'USINAGE Q218=80 ;LONGUEUR RAINURE Q219=12 ;LARGEUR RAINURE Q368=0.2 ;SUREPAIS. LATERALE Q374=+0 ;POSITION ANGULAIRE Q367=0 ;POSITION RAINURE Q207=500 ;AVANCE FRAISAGE Q351=+1 ;MODE FRAISAGE Q201=-20 ;PROFONDEUR Q202=5 ;PROFONDEUR DE PASSE Q369=0.1 ;SUREP. DE PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q338=5 ;PASSE DE FINITION Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE 177 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | FRAISAGE DE RAINURES (cycle 253, DIN/ISO : G253, option 19) Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce Plage de saisie 0 à 99999,9999, sinon PREDEF Q204=50 ;SAUT DE BRIDE Q366=1 ;PLONGEE Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de saisie 0 à 99999,9999, sinon PREDEF Q439=0 Q385=500 ;AVANCE DE FINITION ;REFERENCE AVANCE 9 L X+50 Y+50 R0 FMAX M3 M99 Q366 Stratégie de plongée (0/1/2)? : type de stratégie de plongée : 0 = plongée verticale. L'angle de plongée ANGLE du tableau d'outils n'est pas exploité. 1, 2 = plongée pendulaire. Dans le tableau d'outils, l'angle de plongée de l'outil actif ANGLE doit être différent de 0. Sinon, la commande émet un message d'erreur. Sinon PREDEF Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la finition latérale et en profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ Q439 Référence de l'avance (0-3) ? : vous définissez ici à quoi se réfère l'avance programmée : 0 : l'avance se réfère à la trajectoire du centre de l'outil 1 : l'avance se réfère uniquement au tranchant de l'outil lors de la finition latérale, sinon à la trajectoire du centre de l'outil 2 : l'avance se réfère à la finition latérale et à la finition en profondeur de la trajectoire du centre de l'outil 3 : l'avance se réfère toujours au tranchant de l'outil 178 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | RAINURE RONDE (cycle 254, DIN/ISO : G254, option 19) 6.5 RAINURE RONDE (cycle 254, DIN/ISO : G254, option 19) Mode opératoire du cycle Le cycle 254 vous permet d'usiner en intégralité une rainure circulaire. En fonction des paramètres du cycle, vous disposez des alternatives d'usinage suivantes : Usinage intégral : ébauche, finition en profondeur, finition latérale Seulement ébauche Seulement finition en profondeur et finition latérale Seulement finition en profondeur Seulement finition latérale Ebauche 1 L'outil effectue un déplacement pendulaire au centre de la rainure en fonction de l'angle de plongée défini dans le tableau d'outils et ce, jusqu'à la première profondeur de passe. La stratégie de plongée est à définir au paramètre Q366. 2 La CN évide la rainure de l'intérieur vers l'extérieur, en tenant compte des surépaisseurs de finition (Q368 et Q369). 3 La commande retire l'outil de la valeur de la distance de sécurité Q200. Si la largeur de la rainure correspond au diamètre de fraisage, la commande positionne l'outil en dehors de la rainure à chaque passe. 4 Ce processus est répété jusqu'à ce que la profondeur programmée pour la rainure soit atteinte. Finition 5 Si des surépaisseurs de finition sont définies, la commande exécute tout d'abord la finition des parois de la rainure, et ce en plusieurs passes si celles-ci ont été programmées. La paroi de la rainure est accostée de manière tangentielle. 6 La commande effectue ensuite la finition du fond de la rainure, de l'intérieur vers l'extérieur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 179 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | RAINURE RONDE (cycle 254, DIN/ISO : G254, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous avez programmé une position de rainure différente de 0, la commande positionne l'outil uniquement au saut de bride, dans l'axe d'outil. Cela signifie que la position en fin de cycle n'a pas besoin de correspondre à la position de début de cycle ! Ne programmez pas de cotes incrémentales à la suite du cycle. A la fin du cycle, programmez une position absolue sur tous les axes principaux REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive REMARQUE Attention, risque de collision ! Si vous appelez le cycle avec la stratégie d'usinage 2 (finition uniquement), alors le pré-positionnement à la première profondeur de passe et le déplacement à la distance d'approche seront exécutés en avance rapide. Il existe un risque de collision lors du positionnement en avance rapide. Effectuer une opération d'ébauche au préalable Veiller à ce que la commande puisse prépositionner l'outil en avance rapide sans entrer en collision avec la pièce 180 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | RAINURE RONDE (cycle 254, DIN/ISO : G254, option 19) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Si le tableau d'outils est inactif, vous devez toujours plonger perpendiculairement (Q366=0) car vous ne pouvez pas définir l'angle de plongée. Pré-positionner l'outil à la position initiale dans le plan d'usinage, avec correction de rayon R0. Tenir compte du paramètre Q367 (position). La commande pré-positionne automatiquement l'outil sur l'axe d'outil. Tenir compte de Q204 SAUT DE BRIDE. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Si la largeur de la rainure est supérieure au double du diamètre de l'outil, la commande évide alors la rainure de l'intérieur vers l'extérieur. Vous pouvez donc exécuter le fraisage de n'importe quelles rainures avec de petits outils. Si vous utilisez le cycle 254 Rainure circulaire en liaison avec le cycle 221, la position de rainure 0 est interdite. La commande réduit la profondeur de passe à la longueur de coupe LCUTS définie dans le tableau d'outils si cette dernière est inférieure à la profondeur de passe définie dans le cycle Q202. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 181 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | RAINURE RONDE (cycle 254, DIN/ISO : G254, option 19) Paramètres du cycle Q215 Opérations d'usinage (0/1/2)? : définir les opérations d'usinage : 0 : ébauche et finition 1 : ébauche uniquement 2 : finition uniquement La finition latérale et la finition en profondeur ne sont exécutées que si la surépaisseur de finition correspondante (Q368, Q369) est définie. Q219 Largeur de la rainure? (valeur parallèle à l'axe auxiliaire du plan d'usinage) : entrer la largeur de la rainure ; si la largeur de la rainure est égale au diamètre de l'outil, la commande se contente de réaliser l'ébauche (fraisage d'un trou oblong). La largeur maximale de la rainure lors de l'ébauche équivaut à deux fois le diamètre de l'outil. Plage de programmation : 0 à 99999,9999 Q368 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : 0 à 99999,9999 Q375 Diamètre cercle primitif? : entrer le diamètre du cercle primitif. Plage de programmation : 0 à 99999,9999 Q367 Ref. position rainure (0/1/2/3)? : position de la rainure par rapport à la position de l'outil lors de l'appel de cycle : 0 : la position de l'outil n'est pas prise en compte. La position de la rainure est déduite du centre du cercle primitif programmé et de l'angle de départ 1 : position de l'outil = centre du cercle de rainure gauche. L'angle initial Q376 se réfère à cette position. Le centre du cercle primitif programmé n'est pas pris en compte 2 : position de l'outil = centre de l'axe central. L'angle initial Q376 se réfère à cette position. Le centre du cercle primitif programmé n'est pas pris en compte 3 : position de l'outil = centre du cercle de rainure droit. L'angle initial Q376 se réfère à cette position. Le centre programmé du cercle n'est pas pris en compte Q216 Centre 1er axe? (en absolu) : centre du cercle primitif dans l'axe principal du plan d'usinage. N'agit que si Q367 = 0. Plage de programmation : -99999,9999 à 99999,9999 182 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | RAINURE RONDE (cycle 254, DIN/ISO : G254, option 19) Q217 Centre 2ème axe? (en absolu) : centre du cercle primitif sur l'axe auxiliaire du plan d'usinage. N'agit que si Q367 = 0. Plage de programmation : -99999,9999 à 99999,9999 Q376 Angle initial? (en absolu) : entrer l'angle polaire du point de départ. Plage de programmation : -360,000 à 360,000 Q248 Angle d'ouverture de la rainure? (en incrémental) : entrer l'angle d'ouverture de la rainure. Plage de programmation : 0 à 360,000 Q378 Incrément angulaire? (en incrémental) : angle de rotation de l'ensemble de la rainure. Le centre de rotation se trouve au centre du cercle primitif. Plage de programmation : -360,000 à 360,000 Q377 Nombre d'usinages? : nombre d'usinages sur le cercle primitif. Plage de programmation : 1 à 99999 Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage. Le sens de rotation de la broche est pris en compte : +1 = fraisage en avalant –1 = fraisage en opposition PREDEF : la CN utilise la valeur de la séquence GLOBAL DEF. (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond de la rainure Plage de programmation : -99999,9999 à 99999,9999 Q202 Profondeur de passe? (en incrémental) : distance parcourue par l'outil en une passe ; la valeur doit être supérieure à 0. Plage de programmation : 0 à 99999,9999 Q369 Surep. finition en profondeur? (en incrémental) : surépaisseur de finition pour la profondeur. Plage de programmation : 0 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lorsqu'il approche de la profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ Exemple 8 CYCL DEF 254 RAINURE CIRC. Q215=0 ;OPERATIONS D'USINAGE Q219=12 ;LARGEUR RAINURE Q368=0.2 ;SUREPAIS. LATERALE Q375=80 ;DIA. CERCLE PRIMITIF Q367=0 ;REF. POSIT. RAINURE Q216=+50 ;CENTRE 1ER AXE Q217=+50 ;CENTRE 2EME AXE Q376=+45 ;ANGLE INITIAL Q248=90 ;ANGLE D'OUVERTURE Q378=0 ;INCREMENT ANGULAIRE Q377=1 ;NOMBRE D'USINAGES Q207=500 ;AVANCE FRAISAGE Q351=+1 ;MODE FRAISAGE Q201=-20 ;PROFONDEUR Q202=5 ;PROFONDEUR DE PASSE Q369=0.1 ;SUREP. DE PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q338=5 ;PASSE DE FINITION Q200=2 ;DISTANCE D'APPROCHE 183 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | RAINURE RONDE (cycle 254, DIN/ISO : G254, option 19) Q338 Passe de finition? (en incrémental) : cote de la passe de finition de l'outil sur l'axe de la broche. Q338=0: finition en une seule passe. Plage de programmation : 0 à 99999,9999 Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q366 Stratégie de plongée (0/1/2)? : type de stratégie de plongée : 0 : plongée verticale. l'angle de plongée ANGLE du tableau d'outils n'est pas exploité. 1, 2 : plongée pendulaire. Dans le tableau d'outils, l'angle de plongée de l'outil actif ANGLE doit être différent de 0. Sinon, la commande délivre un message d'erreur PREDEF : la TNC utilise la valeur de la séquence GLOBAL DEF. Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la finition latérale et en profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q366=1 ;PLONGEE Q385=500 ;AVANCE DE FINITION Q439=0 ;REFERENCE AVANCE 9 L X+50 Y+50 R0 FMAX M3 M99 Q439 Référence de l'avance (0-3) ? : vous définissez ici à quoi se réfère l'avance programmée : 0 : l'avance se réfère à la trajectoire du centre de l'outil 1 : l'avance se réfère uniquement au tranchant de l'outil lors de la finition latérale, sinon à la trajectoire du centre de l'outil 2 : l'avance se réfère à la finition latérale et à la finition en profondeur de la trajectoire du centre de l'outil 3 : l'avance se réfère toujours au tranchant de l'outil 184 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON RECTANGULAIRE (cycle 256, DIN/ISO : G256, option 19) 6.6 TENON RECTANGULAIRE (cycle 256, DIN/ISO : G256, option 19) Mode opératoire du cycle Le cycle de tenon rectangulaire 256 vous permet d'usiner un tenon rectangulaire. Si une cote de la pièce brute est supérieure à la passe latérale maximale possible, alors la commande exécute plusieurs passes latérales jusqu'à ce que la cote finie soit atteinte. 1 L'outil se déplace de la position de départ du cycle (centre du tenon) à la position de départ de l'usinage du tenon. La position initiale est définie avec le paramètre Q437. La position par défaut (Q437=0) se trouve à 2 mm à droite de la pièce brute du tenon. 2 Si l'outil se trouve au saut de bride, la commande amène l'outil au saut de bride avec l'avance rapide FMAX, puis à la première profondeur de passe avec l'avance de passe en profondeur. 3 L'outil se déplace ensuite de manière tangentielle jusqu'au contour du tenon, puis fraise un contournage. 4 Si un tour ne suffit pas pour atteindre la cote finale, la commande positionne l'outil latéralement à la profondeur de passe actuelle et usine un tour supplémentaire. Pour cela, la commande tient compte de la cote de la pièce brute, de celle de la pièce finie ainsi que de la passe latérale autorisée. Ce processus est répété jusqu'à ce que la cote finale programmée soit atteinte. Si vous décidez toutefois de définir le point de départ au niveau d'un coin plutôt que sur le côté (avec une valeur Q437 différente de 0), la commande fraisera en spirale, du point de départ vers l'intérieur, jusqu'à ce que la cote finale soit atteinte 5 Si d'autres passes profondes sont nécessaires, l'outil quitte le contour en tangente pour atteindre le point de départ de l'usinage du tenon. 6 La commande amène ensuite l'outil à la profondeur de passe suivante et usine le tenon à cette profondeur. 7 Ce processus est répété jusqu'à ce que la profondeur programmée pour le tenon soit atteinte. 8 A la fin du cycle, la commande positionne l'outil à la hauteur de sécurité définie dans le cycle, sur l'axe d'outil. La position finale ne correspond donc pas à la position initiale. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 185 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON RECTANGULAIRE (cycle 256, DIN/ISO : G256, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive REMARQUE Attention, risque de collision ! Si l'espace est insuffisant pour effectuer le mouvement d'approche à proximité du tenon, il existe un risque de collision. La commande a besoin de plus ou moins de place pour procéder au mouvement d'approche, en fonction de la position d'approche définie à Q439. Prévoir suffisamment de place à côté du tenon pour le mouvement d'approche Au minimum le diamètre d'outil + 2 mm A la fin, la commande ramène l'outil à la distance d'approche ou au saut de bride (si programmé). La position finale de l'outil après l'exécution du cycle ne correspond pas à la position initiale. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Pré-positionner l'outil à la position initiale dans le plan d'usinage, avec correction de rayon R0. Tenir compte du paramètre Q367 (position). La commande pré-positionne automatiquement l'outil sur l'axe d'outil. Tenir compte de Q204 SAUT DE BRIDE. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. La commande réduit la profondeur de passe à la longueur de coupe LCUTS définie dans le tableau d'outils si cette dernière est inférieure à la profondeur de passe définie dans le cycle Q202. 186 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON RECTANGULAIRE (cycle 256, DIN/ISO : G256, option 19) Paramètres du cycle Q218 Longueur premier côté? : longueur du tenon, parallèlement à l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q424 Cote pièce br. côté 1? : longueur de la pièce brute du tenon, parallèlement à l'axe principal du plan d'usinage. Définir une cote pièce br. côté 1 supérieure au 1er côté. La commande effectue plusieurs passes latérales lorsque la différence entre la cote 1 de la pièce brute et la cote 1 de la pièce finie est supérieure à la passe latérale admise (rayon d'outil x recouvrement de trajectoire Q370). La commande calcule toujours une passe latérale constante. Plage de programmation : 0 à 99999,9999 Q219 Longueur second côté? : longueur du tenon, parallèlement à l'axe auxiliaire du plan d'usinage. Définir une cote pièce br. côté 2 supérieure au 2ème côté. La commande effectue plusieurs passes latérales lorsque la différence entre la cote 2 de la pièce brute et la cote 2 de la pièce finie est supérieure à la passe latérale admise (rayon d'outil x recouvrement de trajectoire Q370). La commande calcule toujours une passe latérale constante. Plage de programmation : 0 à 99999,9999 Q425 Cote pièce br. côté 2? : longueur de la pièce brute du tenon, parallèlement à l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q220 Rayon / Chanfrein (+/-)? : programmez la valeur de l'élément de forme Rayon ou Chanfrein. Si vous entrez une valeur positive comprise entre 0 et +99999,9999, la commande crée un arrondi au niveau de chaque coin. La valeur que vous avez indiquée correspond alors à la valeur du rayon. Si vous entrez une valeur négative comprise entre 0 et -99999,9999, tous les coins du contour seront prévus avec un chanfrein ; la valeur indiquée correspondra alors à la longueur du chanfrein. Q368 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage laissée par la commande. Plage de programmation : 0 à 99999,9999 Q224 Position angulaire? (en absolu) : angle de rotation pour tout l'usinage. Le centre de rotation est situé à la position à laquelle se trouve l'outil lors de l'appel du cycle. Plage de programmation : -360,0000 à 360,0000 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 187 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON RECTANGULAIRE (cycle 256, DIN/ISO : G256, option 19) Q367 Position du tenon (0/1/2/3/4)? : position du tenon par rapport à la position de l'outil lors de l'appel de cycle : 0 : position de l'outil = centre du tenon 1 : position de l'outil = coin inférieur gauche 2 : position de l'outil = coin inférieur droit 3 : position de l'outil = coin supérieur droit 4 : position de l'outil = coin supérieur gauche Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Exemple 8 CYCL DEF 256 TENON RECTANGULAIRE Q218=60 ;1ER COTE Q424=74 ;COTE PIECE BR. 1 Q219=40 ;2EME COTE Q425=60 ;COTE PIECE BR. 2 Q220=5 ;RAYON D'ANGLE Q368=0.2 ;SUREPAIS. LATERALE Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage. Le sens de rotation de la broche est pris en compte : +1 = fraisage en avalant –1 = fraisage en opposition PREDEF : la CN utilise la valeur de la séquence GLOBAL DEF. (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du tenon Plage de programmation : -99999,9999 à 99999,9999 Q202 Profondeur de passe? (en incrémental) : distance parcourue par l'outil en une passe ; la valeur doit être supérieure à 0. Plage de programmation : 0 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lorsqu'il approche de la profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FMAX, FAUTO, FU, FZ Q224=+0 ;POSITION ANGULAIRE Q367=0 ;POSITION DU TENON Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce Plage de saisie 0 à 99999,9999, sinon PREDEF Q207=500 ;AVANCE FRAISAGE Q351=+1 ;MODE FRAISAGE Q201=-20 ;PROFONDEUR Q202=5 ;PROFONDEUR DE PASSE Q206=150 ;AVANCE PLONGEE PROF. Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q370=1 ;FACTEUR RECOUVREMENT Q437=0 ;POSITION D'APPROCHE Q215=1 ;OPERATIONS D'USINAGE Q369=+0 ;SUREP. DE PROFONDEUR Q338=+0 ;PASSE DE FINITION Q385=+0 ;AVANCE DE FINITION 9 L X+50 Y+50 R0 FMAX M3 M99 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de saisie 0 à 99999,9999, sinon PREDEF Q370 Facteur de recouvrement? : Q370 x rayon d'outil permet d'obtenir la passe latérale k. Le recouvrement est considéré comme recouvrement maximal. Pour éviter qu'il ne reste de la matière dans les coins, il est possible de réduire le recouvrement. Plage de saisie 0,1 à 1,9999, sinon PREDEF 188 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON RECTANGULAIRE (cycle 256, DIN/ISO : G256, option 19) Q437 Position d'approche (0...4) ? : vous définissez ici la stratégie d'approche de l'outil : 0 : à droite du tenon (réglage par défaut) 1 : à gauche de l'angle inférieur 2 : à droite de l'angle inférieur 3 : à droite de l'angle supérieur 4 : à gauche de l'angle supérieur. Si des marques apparaissent à la surface du tenon lors de l'approche avec Q437=0, vous devez sélectionner une autre position d'approche. Q215 Opérations d'usinage (0/1/2)? : définir les opérations d'usinage : 0 : ébauche et finition 1 : ébauche uniquement 2 : finition uniquement La finition latérale et la finition en profondeur ne sont exécutées que si la surépaisseur de finition correspondante (Q368, Q369) est définie. Q369 Surep. finition en profondeur? (en incrémental) : surépaisseur de finition pour la profondeur. Plage de programmation : 0 à 99999,9999 Q338 Passe de finition? (en incrémental) : cote de la passe de finition de l'outil sur l'axe de la broche. Q338=0: finition en une seule passe. Plage de programmation : 0 à 99999,9999 Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la finition latérale et en profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 189 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON CIRCULAIRE (cycle 257, DIN/ISO : G251, option 19) 6.7 TENON CIRCULAIRE (cycle 257, DIN/ISO : G251, option 19) Mode opératoire du cycle Le cycle de tenon circulaire 257 vous permet d'usiner un tenon circulaire. La commande crée le tenon circulaire avec une passe en spirale qui part du diamètre de la pièce brute. 1 Si l'outil se trouve en de dessous du saut de bride, la commande retire l'outil au saut de bride. 2 L'outil part du centre du tenon pour atteindre la position de départ de l'usinage du tenon. Le paramètre Q376 permet de définir la position initiale qui est calculée à partir de l'angle polaire par rapport au centre du tenon. 3 La commande amène l'outil à la distance d'approche Q200 en avance rapide FMAX, puis à la première profondeur de passe avec l'avance définie pour la passe en profondeur. 4 La commande crée le tenon circulaire avec une passe en forme de spirale, en tenant compte du recouvrement de trajectoire. 5 La commande déplace l'outil sur une trajectoire tangentielle, à 2 mm du contour. 6 Si plusieurs passes en profondeur sont nécessaires, la nouvelle passe en profondeur a lieu au point le plus proche du mouvement de sortie. 7 Ce processus est répété jusqu'à ce que la profondeur programmée pour le tenon soit atteinte. 8 A la fin du cycle, l'outil est relevé au saut de bride défini dans le cycle en empruntant une trajectoire tangentielle, dans l'axe d'outil. 190 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON CIRCULAIRE (cycle 257, DIN/ISO : G251, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive REMARQUE Attention, risque de collision ! Il existe un risque de collision s’il n’y a pas assez de place à côté du tenon pour le mouvement d’approche. Dans ce cycle, la commande exécute un mouvement d'approche. Pour définir la position de départ exacte, vous indiquez un angle de départ compris entre 0° et 360° au paramètre Q376. Selon l'angle de départ Q376, il faut laisser à côté du tenon l'espace disponible suivant : au minimum le diamètre d'outil + +2 mm. Si vous utilisez la valeur par défaut -1, la commande calcule automatiquement la position de départ. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Pré-positionner l'outil à la position initiale dans le plan d'usinage (centre du tenon) avec correction de rayon R0. La commande pré-positionne automatiquement l'outil sur l'axe d'outil. Tenir compte de Q204 SAUT DE BRIDE. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. La commande ramène l'outil à la position de départ en fin de cycle. La commande réduit la profondeur de passe à la longueur de coupe LCUTS définie dans le tableau d'outils si cette dernière est inférieure à la profondeur de passe définie dans le cycle Q202. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 191 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON CIRCULAIRE (cycle 257, DIN/ISO : G251, option 19) Paramètres du cycle Q223 Diamètre pièce finie? : diamètre du tenon une fois qu'il est complètement usiné. Plage de programmation : 0 à 99999,9999 Q222 Diamètre pièce brute? : diamètre de la pièce brute. Définir un diamètre de pièce brute supérieur au diamètre de la pièce finie La commande exécute plusieurs passes latérales si la différence entre le diamètre de la pièce brute et celui de la pièce finie est supérieure à la passe latérale autorisée (rayon d'outil x facteur de recouvrement Q370). La commande calcule toujours une passe latérale constante. Plage de programmation : 0 à 99999,9999 Q368 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : 0 à 99999,9999 Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage. Le sens de rotation de la broche est pris en compte : +1 = fraisage en avalant –1 = fraisage en opposition PREDEF : la CN utilise la valeur de la séquence GLOBAL DEF. (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du tenon Plage de programmation : -99999,9999 à 99999,9999 Q202 Profondeur de passe? (en incrémental) : distance parcourue par l'outil en une passe ; la valeur doit être supérieure à 0. Plage de programmation : 0 à 99999,9999 192 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON CIRCULAIRE (cycle 257, DIN/ISO : G251, option 19) Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lorsqu'il approche de la profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FMAX, FAUTO, FU, FZ Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce Plage de saisie 0 à 99999,9999, sinon PREDEF Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de saisie 0 à 99999,9999, sinon PREDEF Q370 Facteur de recouvrement? : Q370 x le rayon de l'outil donne la passe latérale k. Plage de programmation : 0,0001 à 1,9999 sinon PREDEF Q376 Angle initial? : angle polaire par rapport au centre du tenon, à partir duquel l'outil approche le tenon. Plage de programmation 0 à 359° Q215 Opérations d'usinage (0/1/2)? : type d'usinage : 0 : ébauche et finition 1 : ébauche uniquement 2 : finition uniquement Q369 Surep. finition en profondeur? (en incrémental) : surépaisseur de finition pour la profondeur. Plage de programmation : 0 à 99999,9999 Q338 Passe de finition? (en incrémental) : cote de la passe de finition de l'outil sur l'axe de la broche. Q338=0: finition en une seule passe. Plage de programmation : 0 à 99999,9999 Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la finition latérale et en profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 8 CYCL DEF 257 TENON CIRCULAIRE Q223=60 ;DIA. PIECE FINIE Q222=60 ;DIAM. PIECE BRUTE Q368=0.2 ;SUREPAIS. LATERALE Q207=500 ;AVANCE FRAISAGE Q351=+1 ;MODE FRAISAGE Q201=-20 ;PROFONDEUR Q202=5 ;PROFONDEUR DE PASSE Q206=150 ;AVANCE PLONGEE PROF. Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q370=1 ;FACTEUR RECOUVREMENT Q376=0 ;ANGLE INITIAL Q215=+1 ;OPERATIONS D'USINAGE Q369=0 ;SUREP. DE PROFONDEUR Q338=0 ;PASSE DE FINITION Q385=+500 ;AVANCE DE FINITION 9 L X+50 Y+50 R0 FMAX M3 M99 193 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON POLYGONAL (cycle 258, DIN/ISO : G258, option 19) 6.8 TENON POLYGONAL (cycle 258, DIN/ISO : G258, option 19) Mode opératoire du cycle Le cycle Tenon polygonal permet de créer un polygone régulier par un usinage extérieur. La procédure de fraisage s'effectue en trajectoire spiralée, à partir du diamètre de la pièce brute. 1 Si l'outil se trouve en dessous de la valeur du saut de bride en début d'usinage, la commande retire l'outil à la valeur du saut de bride. 2 La commande amène l'outil à la position de départ de l'usinage du tenon en partant du centre du tenon. La position de départ dépend notamment du diamètre de la pièce brute et de la position angulaire du tenon. La position angulaire est définie au paramètre Q224. 3 L'outil est amené au saut de bride défini au paramètre Q200, en avance rapide FMAX. A partir de là, il est plongé à la profondeur de passe avec l'avance paramétrée. 4 La commande crée le tenon polygonal avec une passe en forme de spirale, en tenant compte du recouvrement de trajectoire. 5 La commande déplace l'outil selon une trajectoire tangentielle, de l'extérieur vers l'intérieur. 6 L'outil est relevé en avance rapide à la valeur du saut de bride, dans le sens de l'axe de la broche. 7 Si plusieurs passes en profondeur sont nécessaires la commande repositionne l'outil au point de départ de l'usinage du tenon avant d'effectuer les passes en profondeur. 8 Ce processus est répété jusqu'à ce que la profondeur programmée pour le tenon soit atteinte. 9 A la fin du cycle, l'outil est dégagé par un mouvement tangentiel. La commande amène ensuite l'outil au saut de bride dans l'axe d'outil. 194 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON POLYGONAL (cycle 258, DIN/ISO : G258, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive REMARQUE Attention, risque de collision ! Dans ce cycle, la commande exécute automatiquement un mouvement d'approche. Une collision peut survenir si vous ne prévoyez pas suffisamment de place pour cela. Vous définissez avec Q224 l'angle d'usinage du premier coin du tenon polygonal. Plage de programmation : -360° à +360°. Selon la position angulaire définie au paramètre Q224, vous devrez laisser à côté du tenon l'espace disponible suivant : au minimum le diamètre d'outil +2 mm. REMARQUE Attention, risque de collision ! A la fin, la commande ramène l'outil à la distance d'approche ou au saut de bride (si programmé). La position finale de l'outil après l'exécution du cycle ne correspond pas forcément à la position initiale ! Contrôler les mouvements de déplacement de la machine La simulation permet de contrôler la position finale de l'outil après l'exécution du cycle. Une fois le cycle exécuté, programmer des coordonnées absolues (et non en incrémental) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 195 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON POLYGONAL (cycle 258, DIN/ISO : G258, option 19) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant le début du cycle, vous devez pré-positionner l'outil dans le plan d'usinage. Pour cela, il faut amener l'outil avec la correction de rayon R0 au centre du tenon. La commande pré-positionne automatiquement l'outil sur l'axe d'outil. Tenir compte de Q204 SAUT DE BRIDE. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. La commande réduit la profondeur de passe à la longueur de coupe LCUTS définie dans le tableau d'outils si cette dernière est inférieure à la profondeur de passe définie dans le cycle Q202. 196 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON POLYGONAL (cycle 258, DIN/ISO : G258, option 19) Paramètres du cycle Q573 Cercle insc./Cercle circ. (0/1)? : vous indiquez ici si la cotation se réfère au cercle inscrit ou au cercle circonscrit : 0= cotation par rapport au cercle inscrit 1= cotation par rapport au cercle circonscrit Q571 Diamètre du cercle de référence? : vous indiquez ici la valeur du diamètre du cercle de référence. Vous devez définir au paramètre Q573 si le diamètre indiqué se réfère au cercle inscrit ou au cercle circonscrit. Plage de programmation : 0 à 99999.9999 Q222 Diamètre pièce brute? : vous indiquez ici la valeur du diamètre de la pièce brute. Le diamètre de la pièce brute doit être plus grand que le diamètre du cercle de référence. La commande exécute plusieurs passes latérales si la différence entre le diamètre de la pièce brute et celui du cercle de référence est supérieure à la passe latérale autorisée (rayon d'outil x facteur de recouvrement Q370). La commande calcule toujours une passe latérale constante. Plage de programmation : 0 à 99999,9999 Q572 Nombre de sommets? : vous indiquez ici le nombre de coins (angles) du tenon polygonal. La commande répartit toujours uniformément les coins sur le tenon. Plage de programmation : 3 à 30 Q224 Position angulaire? : vous définissez ici l'angle selon lequel le coin du tenon polygonal doit être usiné. Plage de programmation : -360° à +360° Q220 Rayon / Chanfrein (+/-)? : programmez la valeur de l'élément de forme Rayon ou Chanfrein. Si vous entrez une valeur positive comprise entre 0 et +99999,9999, la commande crée un arrondi au niveau de chaque coin. La valeur que vous avez indiquée correspond alors à la valeur du rayon. Si vous entrez une valeur négative comprise entre 0 et -99999,9999, tous les coins du contour seront prévus avec un chanfrein ; la valeur indiquée correspondra alors à la longueur du chanfrein. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q573 = 0 Q573 = 1 197 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON POLYGONAL (cycle 258, DIN/ISO : G258, option 19) Q368 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Si vous programmez ici une valeur négative, la commande positionne l'outil à un diamètre en dehors du diamètre de la pièce brute après l'opération ébauche. Plage de programmation : -99999,9999 à 99999,9999 Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage. Le sens de rotation de la broche est pris en compte : +1 = fraisage en avalant –1 = fraisage en opposition PREDEF : la CN utilise la valeur de la séquence GLOBAL DEF. (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du tenon Plage de programmation : -99999,9999 à 99999,9999 Q202 Profondeur de passe? (en incrémental) : distance parcourue par l'outil en une passe ; la valeur doit être supérieure à 0. Plage de programmation : 0 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lorsqu'il approche de la profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FMAX, FAUTO, FU, FZ Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce Plage de saisie 0 à 99999,9999, sinon PREDEF Exemple 8 CYCL DEF 258 TENON POLYGONAL Q573=1 ;CERCLE DE REFERENCE Q571=50 ;DIAM. CERCLE DE REF. Q222=120 ;DIAM. PIECE BRUTE Q572=10 ;NOMBRE DE SOMMETS Q224=40 ;POSITION ANGULAIRE Q220=2 ;RAYON / CHANFREIN Q368=0 ;SUREPAIS. LATERALE Q207=3000 ;AVANCE FRAISAGE Q351=1 ;MODE FRAISAGE Q201=-18 ;PROFONDEUR Q202=10 ;PROFONDEUR DE PASSE Q206=150 ;AVANCE PLONGEE PROF. Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q370=1 ;FACTEUR RECOUVREMENT Q215=0 ;OPERATIONS D'USINAGE Q369=0 ;SUREP. DE PROFONDEUR Q338=0 ;PASSE DE FINITION Q385=500 ;AVANCE DE FINITION 9 L X+50 Y+50 R0 FMAX M3 M99 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 198 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | TENON POLYGONAL (cycle 258, DIN/ISO : G258, option 19) Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de saisie 0 à 99999,9999, sinon PREDEF Q370 Facteur de recouvrement? : Q370 x le rayon de l'outil donne la passe latérale k. Plage de programmation : 0,0001 à 1,9999 sinon PREDEF Q215 Opérations d'usinage (0/1/2)? : définir les opérations d'usinage : 0 : ébauche et finition 1 : ébauche uniquement 2 : finition uniquement La finition latérale et la finition en profondeur ne sont exécutées que si la surépaisseur de finition correspondante (Q368, Q369) est définie. Q369 Surep. finition en profondeur? (en incrémental) : surépaisseur de finition pour la profondeur. Plage de programmation : 0 à 99999,9999 Q338 Passe de finition? (en incrémental) : cote de la passe de finition de l'outil sur l'axe de la broche. Q338=0: finition en une seule passe. Plage de programmation : 0 à 99999,9999 Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la finition latérale et en profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 199 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19) 6.9 SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19) Mode opératoire du cycle Le cycle 233 permet d'usiner une surface plane en plusieurs passes en tenant compte d'une surépaisseur de finition. Vous pouvez également définir dans le cycle des parois latérales qui doivent être prises en compte lors de l'usinage de la surface transversale. Plusieurs stratégies d'usinage sont disponibles dans le cycle : Stratégie Q389=0 : usinage en méandres, passe latérale à l'extérieur de la surface à usiner Stratégie Q389=1 : Usinage en méandres, passe latérale, au bord de la surface à usiner Stratégie Q389=2 : Usinage ligne à ligne avec dépassement, passe latérale en avance rapide le retrait Stratégie Q389=3 : Usinage ligne à ligne sans dépassement, passe latérale en avance rapide le retrait Stratégie Q389=4 : Usinage en spirale de l'extérieur vers l'intérieur 1 La commande déplace l'outil en avance rapide FMAX de la position actuelle, dans le plan d'usinage, au point de départ 1 : le point de départ dans le plan d'usinage se trouve près de la pièce, décalé de la valeur du rayon d'outil et de la valeur de la distance d'approche latérale. 2 La commande positionne ensuite l'outil à la distance d'approche, en avance rapide FMAX, dans l'axe de la broche. 3 L'outil se déplace ensuite, avec l'avance de fraisage Q207, à la première profondeur de passe qui a été calculée par la commande sur l'axe de broche. 200 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19) Stratégie Q389=0 et Q389 =1 Les stratégies Q389=0 et Q389=1 se distinguent par le dépassement lors du surfaçage. Si Q389=0, le point final se trouve en dehors de la surface. Si Q389=1, il se trouve en revanche en bordure de la surface. La commande calcule le point final 2 à partir de la longueur latérale et de la distance d'approche latérale. Avec la stratégie Q389=0, la commande déplace également l'outil de la valeur du rayon d'outil, au-dessus de la surface transversale. 4 La commande déplace l'outil jusqu'au point final 2 avec l'avance de fraisage programmée. 5 La commande décale ensuite l'outil de manière transversale jusqu'au point de départ de la ligne suivante, avec l'avance de prépositionnement ; la commande calcule le décalage à partir de la largeur programmée, du rayon d'outil, du facteur de recouvrement et de distance d'approche latérale. 6 Puis, la commande retire l'outil en sens inverse, avec l'avance de fraisage. 7 Le processus est répété jusqu'à ce que la surface programmée soit intégralement usinée. 8 La commande ramène l'outil au point de départ 1, en avance rapide FMAX. 9 Si plusieurs passes sont nécessaires, la commande déplace l'outil à la profondeur de passe suivante dans l'axe de broche, avec l'avance de positionnement. 10 Le processus est répété jusqu’à ce que toutes les passes soient exécutées. Lors de la dernière passe, l'outil exécute l'usinage de la surépaisseur de finition, avec l'avance de finition. 11 A la fin, la commande retire l'outil au saut de bride avec l'avance FMAX. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 201 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19) Stratégies Q389=2 et Q389=3 Les stratégies Q389=2 et Q389=3 se distinguent par le dépassement lors du surfaçage. Si Q389=2, le point final se trouve en dehors de la surface. Si Q389=3, il se trouve en revanche en bordure de la surface. La commande calcule le point final 2 à partir de la longueur latérale et de la distance d'approche latérale. Avec la stratégie Q389=2, la commande déplace également l'outil de la valeur du rayon d'outil, au-dessus de la surface transversale. 4 L'outil est ensuite amené au point final 2, avec l'avance de fraisage programmée. 5 La commande amène l'outil à la distance d'approche, audessus de la profondeur de passe actuelle, puis le ramène directement au point de départ de la ligne suivante avec FMAX, . La commande calcule le décalage à partir de la largeur programmée, du rayon d'outil, du facteur de recouvrement maximal et de la distance d'approche latérale. 6 Ensuite, l'outil se déplace à nouveau à la profondeur de passe actuelle, puis à nouveau en direction du point final 2. 7 Le processus est répété jusqu'à ce que la surface programmée soit intégralement usinée. Au bout de la dernière trajectoire, la commande positionne l'outil en avance rapide FMAX jusqu'au point de départ 1. 8 Si plusieurs passes sont nécessaires, la commande déplace l'outil à la profondeur de passe suivante dans l'axe de broche, avec l'avance de positionnement. 9 Le processus est répété jusqu’à ce que toutes les passes soient exécutées. Lors de la dernière passe, l'outil exécute l'usinage de la surépaisseur de finition, avec l'avance de finition. 10 A la fin, la commande retire l'outil au saut de bride avec l'avance FMAX. 202 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19) Stratégie Q389=4 4 L'outil se déplace ensuite au point de départ de la trajectoire de fraisage avec l'Avance de fraisage programmée, selon un mouvement d'approche tangentiel. 5 La commande usine la surface transversale de l'extérieur vers l'intérieur avec l'avance de fraisage ; les trajectoires de fraisage deviennent de plus en plus courtes. Du fait de la constance de la passe latérale, l'outil reste maîtrisable à tout moment. 6 Le processus est répété jusqu'à ce que la surface programmée soit intégralement usinée. Au bout de la dernière trajectoire, la commande positionne l'outil en avance rapide FMAX jusqu'au point de départ 1. 7 Si plusieurs passes sont nécessaires, la commande déplace l'outil à la profondeur de passe suivante dans l'axe de broche, avec l'avance de positionnement. 8 Le processus est répété jusqu’à ce que toutes les passes soient exécutées. Lors de la dernière passe, l'outil exécute l'usinage de la surépaisseur de finition, avec l'avance de finition. 9 A la fin, la commande retire l'outil au saut de bride avec l'avance FMAX. Limite En définissant des limites, vous délimitez la zone d'usinage de la surface transversale. Ainsi, vous pouvez par exemple tenir compte des parois latérales ou des épaulements pendant l'usinage. Une paroi latérale définie par une limite est usinée à la cote résultant du point de départ ou du point final de la surface transversale. Pour l'ébauche, la commande tient compte de la surépaisseur latérale. Pour la finition, la surépaisseur sert au prépositionnement de l'outil. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 203 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous renseignez une profondeur positive dans un cycle, la commande inverse le calcul de pré-positionnement. L'outil avance en rapide jusqu’à la distance d’approche en dessous de la surface de la pièce en suivant l'axe d’outil ! Entrer une profondeur négative Utiliser le paramètre machine displayDepthErr (n°201003) pour définir si la commande doit émettre un message d'erreur (on) ou pas (off) en cas de saisie d'une profondeur positive Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Prépositionner l'outil à la position de départ dans le plan d'usinage avec correction de rayon R0. Tenir compte du sens d'usinage. La commande pré-positionne automatiquement l'outil sur l'axe d'outil. Tenir compte de Q204 SAUT DE BRIDE. Définir un SAUT DE BRIDE Q204 de manière à ce qu'aucune collision ne puisse se produire avec la pièce ou les moyens de serrage. Si vous avez paramétré la même valeur pour Q227 PT INITIAL 3EME AXE et Q386 POINT FINAL 3EME AXE, la commande ne lancera pas le cycle (profondeur programmée = 0). La commande réduit la profondeur de passe à la longueur de coupe LCUTS définie dans le tableau d'outils si cette dernière est inférieure à la profondeur de passe définie dans le cycle Q202. Si vous définissez Q370 FACTEUR RECOUVREMENT >1, le recouvrement de trajectoire programmé est pris en compte dès la première trajectoire d’usinage. Le cycle 233 surveille la longueur d’outil/de tranchant LCUTS qui a été définie dans le tableau d'outils. La commande répartit l’usinage en plusieurs étapes si la longueur de l’outil ou du tranchant ne suffit pas pour réaliser une opération de finition en une seule fois. Si une limite (Q347, Q348 ou Q349) est programmée dans le sens d'usinage Q350, le cycle rallonge le contour de la valeur du rayon d'angle Q220, dans le sens de la passe. La surface indiquée est intégralement usinée. 204 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19) Q215 Opérations d'usinage (0/1/2)? : définir les opérations d'usinage : 0 : ébauche et finition 1 : ébauche uniquement 2 : finition uniquement La finition latérale et la finition en profondeur ne sont exécutées que si la surépaisseur de finition correspondante (Q368, Q369) est définie. Q389 Stratégie d'usinage (0-4) ? : vous définissez ici comment la commande doit usiner la surface : 0 : usinage en méandres, passe latérale avec avance de positionnement en dehors de la surface à usiner 1 : usinage en méandres, passe latérale avec avance de fraisage en bordure de la surface à usiner 2 : usinage en ligne à ligne, retrait et passe latérale avec l'avance de positionnement en dehors de la surface à usiner 3 : usinage en ligne à ligne, retrait et passe latérale avec l'avance de positionnement en bordure de la surface à usiner 4 : usinage en spirale, passe constante de l'extérieur vers l'intérieur Q350 Sens du fraisage? : axe du plan d'usinage selon lequel l'usinage doit être orienté : 1 : axe principal = sens de l'usinage 2 : axe auxiliaire = sens de l'usinage Q218 Longueur premier côté? (en incrémental) : longueur de la surface à usiner sur l'axe principal du plan d'usinage, par rapport au 1er axe. Plage de programmation : -99999,9999 à 99999,9999 Q219 Longueur second côté? (en incrémental) : longueur de la surface à usiner dans l'axe auxiliaire du plan d'usinage. Vous pouvez définir le sens de la première passe transversale par rapport au PT INITIAL 2EME AXE en faisant précéder la valeur d'un signe. Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q219 Paramètres du cycle Q357 Q227 =0 Q347 Q348 Q349 = -1 = +1 = -2 = +2 205 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19) Q227 Point initial 3ème axe? (en absolu) : coordonnée de la surface de la pièce à partir de laquelle les passes sont calculées Plage de programmation : -99999,9999 à 99999,9999 Q386 Point final sur 3ème axe? (en absolu) : coordonnée sur l'axe de la broche à laquelle la surface doit être fraisée en transversal. Plage de programmation : -99999,9999 à 99999,9999 Q369 Surep. finition en profondeur? (en incrémental) : valeur de la dernière passe Plage de programmation : 0 à 99999,9999 Q202 PROF. PLONGEE MAX. (en incrémental) : valeur de passe de l'outil ; la valeur doit être supérieure à 0. Plage de programmation : 0 à 99999,9999 Q370 Facteur de recouvrement? : passe latérale maximale k. La commande calcule la passe latérale effective à partir de la de la deuxième longueur latérale (Q219) et du rayon d'outil de manière à usiner avec une passe latérale constante. Plage de programmation : 0,1 à 1,9999. Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la dernière passe de fraisage, en mm/min. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil à l'approche de la position de départ et lors du déplacement à la ligne suivante, en mm/min ; si le déplacement s'effectue en transversal dans la matière (Q389=1), la commande déplacera l'outil avec l'avance de fraisage Q207. Plage de programmation : 0 à 99999,9999, sinon FMAX, FAUTO Exemple 8 CYCL DEF 233 FRAISAGE TRANSVERSAL Q215=0 ;OPERATIONS D'USINAGE Q389=2 ;STRATEGIE FRAISAGE Q350=1 ;SENS DE FRAISAGE Q218=120 ;1ER COTE Q219=80 ;2EME COTE Q227=0 ;PT INITIAL 3EME AXE Q386=-6 ;POINT FINAL 3EME AXE Q369=0.2 ;SUREP. DE PROFONDEUR Q202=3 ;PROF. PLONGEE MAX. Q370=1 ;FACTEUR RECOUVREMENT Q207=500 ;AVANCE FRAISAGE Q385=500 ;AVANCE DE FINITION Q253=750 ;AVANCE PRE-POSIT. Q357=2 ;DIST. APPR. LATERALE Q200=2 ;DISTANCE D'APPROCHE Q204=50 ;SAUT DE BRIDE Q347=0 ;1ERE LIMITE Q348=0 ;2EME LIMITE Q349=0 ;3EME LIMITE Q220=2 ;RAYON D'ANGLE Q368=0 ;SUREPAIS. LATERALE Q338=0 ;PASSE DE FINITION Q367=-1 ;POS. DE SURFACE (-1/0/1/2/3/4)? 9 L X+0 Y+0 R0 FMAX M3 M99 Q357 Distance d'approche latérale? (en incrémental) Le paramètre Q357 a un effet dans les situations suivantes : Approche de la première profondeur de passe : Q357 correspond à la distance latérale de l'outil par rapport à la pièce Ebauche avec les stratégies de fraisage Q389=0-3: La surface à usiner est agrandie de la valeur de Q357 au paramètre Q350 SENS DE FRAISAGE, dans la mesure où il n'y a pas de limitation dans cette direction Finition latérale : Les trajectoires sont rallongées de la valeur de Q357 au paramètre Q350 SENS DE FRAISAGE. Plage de programmation : de 0 à 99999,9999 206 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de poches/ tenons / rainures | SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19) Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce Plage de saisie 0 à 99999,9999, sinon PREDEF Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de saisie 0 à 99999,9999, sinon PREDEF Q347 1ère limite? : sélectionner le côté de la pièce sur lequel une paroi latérale est censée limitée la surface transversale (impossible avec les usinages en spirale). En fonction de la position de la paroi latérale, la commande limite l'usinage de la surface transversale à la coordonnée du point de départ correspondant ou à la longueur latérale : (impossible avec les usinages en spirale) : valeur 0 : pas de limite valeur -1 : limite sur la partie négative de l'axe principal valeur +1 : limite sur la partie positive de l'axe principal valeur -2 : limite sur la partie négative de l'axe auxiliaire valeur +2 : limite sur la partie positive de l'axe auxiliaire HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 207 6 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | SURFAÇAGE (cycle 233, DIN/ISO : G233, option 19) Q348 2ème limite? : voir paramètre 1ère limite Q347 Q349 3ème limite? : voir paramètre 1ère limite Q347 Q220 Rayon d'angle? : rayon d'angle pour les limites (Q347 - Q349). Plage de programmation : 0 à 99999,9999 Q368 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : 0 à 99999,9999 Q338 Passe de finition? (en incrémental) : cote de la passe de finition de l'outil sur l'axe de la broche. Q338=0: finition en une seule passe. Plage de programmation : 0 à 99999,9999 Q367 Pos. de surface (-1/0/1/2/3/4)? : position de la surface par rapport à la position de l'outil lors de l'appel de cycle : -1 : position de l'outil = position actuelle 0 : position de l'outil = centre du tenon 1: position de l'outil = coin inférieur gauche 2 : position de l'outil = coin inférieur droit 3 : position de l'outil = coin supérieur droit 4 : position de l'outil = coin supérieur gauche 208 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | Exemples de programmation 6.10 Exemples de programmation Exemple : Fraisage de poche, tenon, rainure 0 BEGINN PGM C210 MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-40 Définition de la pièce brute 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S3500 Appel de l'outil d'ébauche/finition 4 L Z+250 R0 FMAX Dégager l'outil 5 CYCL DEF 256 TENON RECTANGULAIRE Définition du cycle Usinage extérieur Q218=90 ;1ER COTE Q424=100 ;COTE PIECE BR. 1 Q219=80 ;2EME COTE Q425=100 ;COTE PIECE BR. 2 Q220=0 ;RAYON D'ANGLE Q368=0 ;SUREPAIS. LATERALE Q224=0 ;POSITION ANGULAIRE Q367=0 ;POSITION DU TENON Q207=250 ;AVANCE FRAISAGE Q351=+1 ;MODE FRAISAGE Q201=-30 ;PROFONDEUR Q202=5 ;PROFONDEUR DE PASSE Q206=250 ;AVANCE PLONGEE PROF. Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=20 ;SAUT DE BRIDE Q370=1 ;FACTEUR RECOUVREMENT Q437=0 ;POSITION D'APPROCHE 6 L X+50 Y+50 R0 M3 M99 Appel du cycle Usinage extérieur 7 CYCL DEF 252 POCHE CIRCULAIRE Définition du cycle Poche circulaire Q215=0 ;OPERATIONS D'USINAGE Q223=50 ;DIAMETRE DU CERCLE Q368=0.2 ;SUREPAIS. LATERALE Q207=500 ;AVANCE FRAISAGE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 209 6 Cycles d'usinage : fraisage de poches/ tenons / rainures | Exemples de programmation Q351=+1 ;MODE FRAISAGE Q201=-30 ;PROFONDEUR Q202=5 ;PROFONDEUR DE PASSE Q369=0.1 ;SUREP. DE PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q338=5 ;PASSE DE FINITION Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q370=1 ;FACTEUR RECOUVREMENT Q366=1 ;PLONGEE Q385=750 ;AVANCE DE FINITION Q439=0 ;REFERENCE AVANCE 8 L X+50 Y+50 R0 FMAX M99 Appel du cycle Poche circulaire 9 TOOL CALL 2 Z S5000 Appel de l'outil Fraise à rainurer 10 CYCL DEF 254 RAINURE CIRC. Définition du cycle Rainures Q215=0 ;OPERATIONS D'USINAGE Q219=8 ;LARGEUR RAINURE Q368=0.2 ;SUREPAIS. LATERALE Q375=70 ;DIA. CERCLE PRIMITIF Q367=0 ;REF. POSIT. RAINURE Q216=+50 ;CENTRE 1ER AXE Q217=+50 ;CENTRE 2EME AXE Q376=+45 ;ANGLE INITIAL Q248=90 ;ANGLE D'OUVERTURE Q378=180 ;INCREMENT ANGULAIRE Q377=2 ;NOMBRE D'USINAGES Q207=500 ;AVANCE FRAISAGE Q351=+1 ;MODE FRAISAGE Q201=-20 ;PROFONDEUR Q202=5 ;PROFONDEUR DE PASSE Q369=0.1 ;SUREP. DE PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q338=5 ;PASSE DE FINITION Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q366=1 ;PLONGEE Q385=500 ;AVANCE DE FINITION Q439=0 ;REFERENCE AVANCE Pas de prépositionnement nécessaire en X/Y Point initial 2ème rainure 11 CYCL CALL FMAX M3 Appel du cycle Rainures 12 L Z+250 R0 FMAX M2 Dégagement de l'outil, fin du programme 13 END PGM C210 MM 210 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées 7 Cycles : conversions de coordonnées | Principes de base 7.1 Principes de base Résumé Grâce aux conversions de coordonnées, la commande peut usiner un contour déjà programmé à plusieurs endroits de la pièce en modifiant sa position et ses dimensions. La commande propose les cycles de conversion de coordonnées suivants : Softkey Cycle Page 7 POINT ZERO Décalage des contours directement dans le programme CN ou à partir des tableaux de points zéro 213 8 IMAGE MIROIR Image miroir des contours 221 10 ROTATION Rotation des contours dans le plan d'usinage 223 11 FACTEUR ECHELLE Réduction/agrandissement des contours 225 26 FACTEUR ECHELLE SPECIFIQUE A UN AXE Réduction/agrandissement des contours avec les facteurs d'échelle spécifiques aux axes 226 19 Plan d'usinage Exécution des opérations d'usinage dans le système de coordonnées incliné pour les machines avec têtes pivotantes et/ou plateaux circulaires 228 247 Définition du point d'origine Définition du point d'origine pendant l'exécution du programme 235 Effet des conversions de coordonnées Début de l'effet : une conversion de coordonnées devient active dès qu'elle a été définie – et n'a donc pas besoin d'être appelée. Elle reste active jusqu'à ce qu'elle soit annulée ou redéfinie. Annulation de la conversion de coordonnées Définir de nouveau le cycle avec des valeur pour le comportement de base, par ex. facteur d'échelle 1.0 Exécuter les fonctions auxiliaires M2, M30 ou la séquence CN END PGM (ces fonctions M dépendent de paramètres machine) Sélectionner un nouveau programme CN 212 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées | Décalage du POINT ZERO (cycle 7, DIN/ISO : G54) 7.2 Décalage du POINT ZERO (cycle 7, DIN/ISO : G54) Effet Consultez le manuel de votre machine ! En décalant le point zéro, vous pouvez répéter des opérations d’usinage à plusieurs endroits de la pièce. Après avoir défini le cycle de décalage du point zéro, toutes les coordonnées saisies se réfèrent au nouveau point zéro. La commande affiche le décalage propre à chaque axe dans l'affichage d'état supplémentaire. Il est également possible de programmer des axes rotatifs. Annulation Programmer un décalage de coordonnées X=0 ; Y=0 etc. en programmant de nouveau une définition de cycle Appeler dans le tableau de points zéro un décalage ayant pour coordonnées X=0 ; Y=0 etc. Attention lors de la programmation C'est le constructeur de votre machine qui configure la conversion du décalage de point zéro au paramètre presetToAlignAxis (n°300203). Le paramètre machine CfgDisplayCoordSys (n°127501), disponible en option, vous permet de choisir le système de coordonnées dans lequel l'affichage d’état doit afficher un décalage de point zéro actif. Ce cycle peut être exécuté en mode FUNCTION MODE MILL, FUNCTION MODE TURN et en mode FUNCTION DRESS. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 213 7 Cycles : conversions de coordonnées | Décalage du POINT ZERO (cycle 7, DIN/ISO : G54) Paramètres du cycle Décalage : entrer les coordonnées du nouveau point zéro ; les valeurs absolues se réfèrent au point zéro de la pièce qui a été défini via la définition de point d'origine ; les valeurs incrémentales se réfèrent toujours au dernier point zéro valide. Il se peut que ce dernier ait déjà fait l'objet d'un décalage. Plage de programmation : max. 6 axes CN, chacun de -99999,9999 à 99999,9999 214 Exemple 13 CYCL DEF 7.0 POINT ZERO 14 CYCL DEF 7.1 X+60 15 CYCL DEF 7.2 Y+40 16 CYCL DEF 7.3 Z-5 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles : conversions de coordonnées | Décalage de POINT ZERO avec des tableaux de points zéro (cycle 7, DIN/ISO: G53) 7.3 Décalage de POINT ZERO avec des tableaux de points zéro (cycle 7, DIN/ISO: G53) Effet Vous définissez par exemple des tableaux de points zéro : pour des opérations d’usinage fréquemment récurrentes à diverses positions de la pièce ou pour une utilisation fréquente du même décalage de point zéro. Dans un programme, vous pouvez définir des points zéro soit directement, en définissant le cycle, soit en l'appelant à partir d'un tableau de points zéro. Désactivation Appeler dans le tableau de points zéro un décalage ayant pour coordonnées X=0 ; Y=0 etc. Appeler un décalage ayant pour coordonnées X=0; Y=0 etc. directement avec la définition du cycle Affichages d’état Dans l'affichage d'état supplémentaire, les données suivantes provenant du tableau de points zéro s'affichent : Nom et chemin d'accès du tableau de points zéro actif Numéro du point zéro actif Commentaire de la colonne DOC du numéro de point zéro actif HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 215 7 7 Cycles : conversions de coordonnées | Décalage de POINT ZERO avec des tableaux de points zéro (cycle 7, DIN/ISO: G53) Attention lors de la programmation! Le paramètre machine CfgDisplayCoordSys (n°127501), disponible en option, vous permet de choisir le système de coordonnées dans lequel l'affichage d’état doit afficher un décalage de point zéro actif. Ce cycle peut être exécuté en mode FUNCTION MODE MILL, FUNCTION MODE TURN et en mode FUNCTION DRESS. Les points zéro du tableau de points zéro se réfèrent toujours exclusivement au point d'origine actuel. Si vous utilisez des décalages de point zéro issus des tableaux de points zéro, utilisez dans ce cas la fonction SEL TABLE pour activer le tableau de points zéro souhaité dans le programme CN. Si vous travaillez sans SEL TABLE, vous devez alors activer le tableau de points zéro souhaité avant le test ou l'exécution de programme (ceci vaut également pour le graphique de programmation) : Sélectionner le tableau souhaité pour le test de programme en mode Test de programme, via le gestionnaire de fichiers : le tableau reçoit l'état S. Pour l'exécution du programme, sélectionner le tableau souhaité en mode Exécution PGM pas-à-pas ou Execution PGM en continu via le gestionnaire de fichiers : le tableau reçoit le statut M. Les valeurs de coordonnées des tableaux de points zéro ne sont actives qu’en valeur absolue. Vous ne pouvez insérer de nouvelles lignes qu'en fin de tableau. Si vous créez des tableaux de points zéro, le nom des fichiers doit commencer par une lettre. Paramètres du cycle Décalage : entrer le numéro du point zéro du tableau de points zéro ou un paramètre Q ; si vous entrez un paramètre Q, la commande activera le numéro du point zéro indiqué au paramètre Q. Plage de programmation : 0 à 9999 216 Exemple 77 CYCL DEF 7.0 POINT ZERO 78 CYCL DEF 7.1 #5 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles : conversions de coordonnées | Décalage de POINT ZERO avec des tableaux de points zéro (cycle 7, DIN/ISO: G53) Sélectionner le tableau de points zéro dans le programme CN La fonction SEL TABLE permet de sélectionner le tableau de points zéro depuis lequel la commande extrait les points zéro : Procédez comme suit : Appuyer sur la touche PGM CALL Appuyer sur la softkey SELECTIONNER TABLEAU DECALAGE Entrer le nom de chemin complet du tableau de points zéro Sinon, appuyer sur la softkey SELECTIONNER FICHIER Valider avec la touche FIN Programmer la séquence SEL TABLE avant le cycle 7 Décalage du point zéro. Un tableau de points zéro sélectionné avec SEL TABLE reste actif jusqu'à ce que vous sélectionniez un autre tableau de points zéro avec SEL TABLE ou PGM MGT. Editer un tableau de points zéro en mode Programmation. Après avoir modifié une valeur dans un tableau de points zéro, vous devez enregistrer la modification avec la touche ENT. Si vous ne le faites pas, la modification ne sera pas prise en compte, par exemple lors de l'exécution d'un programme CN. Sélectionner le tableau de points zéro en mode Programmation. Procédez comme suit : Appuyer sur la touche PGM MGT Appuyer sur la softkey SELECT. TYPE. Appuyer sur la softkey AFFICHER TOUS Sélectionner le tableau de votre choix ou indiquer un nouveau nom de fichier Sélectionner le fichier avec la touche ENT HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 217 7 7 Cycles : conversions de coordonnées | Décalage de POINT ZERO avec des tableaux de points zéro (cycle 7, DIN/ISO: G53) La barre de softkeys affiche pour cela notamment les fonctions suivantes : Softkey Fonction Sélectionner le début du tableau Sélectionner la fin du tableau Feuilleter vers le haut Feuilleter vers le bas Chercher (une petite fenêtre apparaît, dans laquelle vous pouvez saisir le texte ou la valeur à rechercher) Réinitialiser tableau Curseur en début de ligne Curseur en fin de ligne Copier la valeur actuelle Insérer la valeur copiée Ajouter nombre de lignes possibles (points zéro) en fin de tableau Insérer une ligne (possible uniquement à la fin du tableau) Effacer une ligne Trier ou masquer les colonnes (une fenêtre s'ouvre) Autre fonction : supprimer, sélectionner, désélectionner tout, enregistrer sous Réinitialiser la colonne Editer le champ actuel Trier les points zéro (une fenêtre s'ouvre pour sélectionner le tri) 218 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles : conversions de coordonnées | Décalage de POINT ZERO avec des tableaux de points zéro (cycle 7, DIN/ISO: G53) Editer un tableau de points zéro en mode Exécution de programme en continu/pas-à-pas Sélectionnez le tableau de points zéro en mode Exécution PGM en continu / pas à pas. Procédez comme suit : Commuter la barre de softkeys. Appuyer sur la softkey SELECT COMPENS. TABLES Appuyer sur la softkey TABLEAU PTS ZERO Reprendre les positions effectives dans le tableau de points zéro : Régler la softkey EDITER sur ON Se positionner sur l'occurrence souhaitée avec les touches fléchées Appuyer sur la touche PRISE EN COMPTE DE LA POSITION EFFECTIVE La CN ne mémorise la position effective que sur l'axe sur lequel le curseur se trouve. Après avoir modifié une valeur dans un tableau de points zéro, vous devez enregistrer la modification avec la touche ENT. Si vous ne le faites pas, la modification ne sera pas prise en compte, par exemple lors de l'exécution d'un programme CN. Si vous modifiez un point zéro, cette modification n'est active qu'après un nouvel appel du cycle 7. Une fois le programme CN, vous ne pouvez plus accéder au tableau de points zéro. Pour effectuer une correction en cours d'exécution de programme, vous disposez des softkeys COMPENS. TABLE T-CS ou COMPENS. TABLE WPL-CS. Pour plus d'informations : consulter le manuel utilisateur "Programmation en Texte clair" Configurer le tableau points zéro Si vous ne voulez pas définir de point zéro pour un axe actif, appuyez sur la touche DEL. La commande supprime alors la valeur numérique du champ correspondant. Vous pouvez modifier le format des tableaux. Pour cela, introduisez le code 555343 dans le menu MOD. La commande propose alors la softkey EDITER FORMAT si vous avez sélectionné un tableau. Si vous sélectionnez cette softkey, la commande ouvre une fenêtre auxiliaire dans laquelle apparaissent les colonnes du tableau sélectionné avec les caractéristiques correspondantes. Les modifications ne sont valables que pour le tableau ouvert. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 219 7 7 Cycles : conversions de coordonnées | Décalage de POINT ZERO avec des tableaux de points zéro (cycle 7, DIN/ISO: G53) Quitter le tableau points zéro Dans le gestionnaire de fichiers, afficher un autre type de fichier et sélectionner le fichier de votre choix. REMARQUE Attention, risque de collision ! La commande ne tient compte des modifications dans un tableau de points zéro que lorsque les valeurs sont mémorisées. Valider immédiatement les modifications du tableau avec la touche ENT Exécuter le programme CN avec vigilance après avoir modifié le tableau de points zéro. Affichages d’état Dans l'affichage d'état supplémentaire, la commande affiche les valeurs du décalage actif du point zéro. 220 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées | MISE EN MIROIR (cycle 8, DIN/ISO : G28) 7.4 MISE EN MIROIR (cycle 8, DIN/ISO : G28) Effet Dans le plan d’usinage, la commande peut exécuter une opération d’usinage inversée L'image miroir est active à partir du moment où elle a été définie dans le programme CN. Elle fonctionne aussi en mode Positionnement avec introd. man.. La commande affiche les axes réfléchis actifs dans l'affichage d'état supplémentaire. Si vous ne souhaitez mettre qu'un seul axe en miroir, le sens de rotation de l'outil sera modifié.Cela ne s'applique pas aux cycles SL. Si vous exécutez l’image miroir de deux axes, le sens du déplacement n’est pas modifié. Le résultat de l'image miroir dépend de la position du point zéro : Le point zéro est situé sur le contour devant être réfléchi : l'élément est réfléchi directement au niveau du point zéro. Le point zéro est situé à l’extérieur du contour devant être réfléchi: L'élément est décalé par rapport à l'axe Désactivation Reprogrammer le cycle IMAGE MIROIR en introduisant NO ENT. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 221 7 Cycles : conversions de coordonnées | MISE EN MIROIR (cycle 8, DIN/ISO : G28) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Si vous exécutez le cycle 8 dans un système incliné, il est recommandé de procéder comme suit : Programmez d'abord le mouvement d'inclinaison et appelez ensuite le cycle 8 IMAGE MIROIR ! Paramètres du cycle Axe réfléchi? : entrer les axes qui doivent être mis en miroir ; tous les axes peuvent être mis en miroir, y compris les axes rotatifs, à l'exception de l'axe de broche et de l'axe auxiliaire correspondant. Il est permis de programmer au maximum trois axes. Plage de programmation : jusqu'à trois axes CN X, Y, Z, U, V, W, A, B, C 222 Exemple 79 CYCL DEF 8.0 IMAGE MIROIR 80 CYCL DEF 8.1 X Y Z HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées | ROTATION (cycle 10, DIN/ISO : G73) 7.5 ROTATION (cycle 10, DIN/ISO : G73) Effet Dans un programme CN, la commande peut activer une rotation du système de coordonnées dans le plan d’usinage, autour du point zéro actif. La ROTATION est active dès lors qu'elle a été définie dans le programme CN. Elle agit aussi en mode Positionnement avec introduction manuelle! La commande affiche l'angle de rotation actif dans l'affichage d'état supplémentaire. Axes de référence (0°) pour l'angle de rotation : Plan X/Y Axe X Plan Y/Z Axe Y Plan Z/X Axe Z Désactivation Reprogrammer le cycle ROTATION avec un angle de 0°. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 223 7 Cycles : conversions de coordonnées | ROTATION (cycle 10, DIN/ISO : G73) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. La CN annule une correction de rayon active en définissant le cycle 10. Au besoin, programmer de nouveau la correction de rayon. Après avoir défini le cycle 10, déplacez les deux axes afin d’activer la rotation. Paramètres du cycle Rotation: Introduire l'angle de rotation en degrés (°). Plage de programmation : -360,000° à +360,000° (en absolu ou en incrémental) Exemple 12 CALL LBL 1 13 CYCL DEF 7.0 POINT ZERO 14 CYCL DEF 7.1 X+60 15 CYCL DEF 7.2 Y+40 16 CYCL DEF 10.0 ROTATION 17 CYCL DEF 10.1 ROT+35 18 CALL LBL 1 224 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées | FACTEUR D'ECHELLE (cycle 11, DIN/ISO : G72) 7.6 FACTEUR D'ECHELLE (cycle 11, DIN/ISO : G72) Effet Dans un programme CN, la commande peut agrandir ou réduire des contours. Vous pouvez par exemple tenir compte de facteurs de réduction/agrandissement. Le FACTEUR D'ECHELLE est actif à partir du moment où il a été défini dans le programme CN. Il fonctionne aussi en mode Positionnement avec introd. man.. La commande indique le facteur d'échelle actif dans l'affichage d'état supplémentaire. Le facteur d'échelle agit : simultanément sur les trois axes de coordonnées sur l’unité de mesure dans les cycles. Condition requise Avant de procéder à l'agrandissement ou à la réduction, il convient de décaler le point zéro sur une arête ou un angle du contour. Agrandissement : SCL supérieur à 1 - 99,999 999 Réduction : SCL inférieur à 1 - 0,000 001 Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Annulation Reprogrammer le cycle FACTEUR ECHELLE avec le facteur 1. Paramètres du cycle Facteur? : renseigner le facteur SCL (angl.: scaling) ; la commande multiplie les coordonnées et les rayons par la valeur de SCL (comme décrit dans "Effet"). Plage de programmation : 0,000001 à 99,999999 Exemple 11 CALL LBL 1 12 CYCL DEF 7.0 POINT ZERO 13 CYCL DEF 7.1 X+60 14 CYCL DEF 7.2 Y+40 15 CYCL DEF 11.0 FACTEUR ECHELLE 16 CYCL DEF 11.1 SCL 0.75 17 CALL LBL 1 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 225 7 Cycles : conversions de coordonnées | FACTEUR D'ECHELLE SPECIFIQUE A L'AXE (cycle 26) 7.7 FACTEUR D'ECHELLE SPECIFIQUE A L'AXE (cycle 26) Effet Avec le cycle 26, vous pouvez définir des facteurs de réduction ou d'agrandissement pour chaque axe. Le FACTEUR D'ECHELLE est actif à partir du moment où il a été défini dans le programme CN. Il fonctionne aussi en mode Positionnement avec introd. man.. La commande indique le facteur d'échelle actif dans l'affichage d'état supplémentaire. Annulation Reprogrammer le cycle FACTEUR ECHELLE avec le facteur 1 pour l’axe concerné. Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Vous ne devez ni agrandir, ni réduire les axes définissant des trajectoires circulaires avec des facteurs de valeurs différentes. Pour chaque axe de coordonnée, vous pouvez introduire un facteur échelle différent. Les coordonnées d’un centre peuvent être programmées pour tous les facteurs échelle. Le contour est étiré à partir du centre ou bien réduit dans sa direction, donc pas nécessairement depuis le point zéro actuel ou en direction de celui-ci comme dans le cycle 11 FACTEUR ECHELLE. 226 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées | FACTEUR D'ECHELLE SPECIFIQUE A L'AXE (cycle 26) Paramètres du cycle Axe et facteur : sélectionner le ou les axe(s) de coordonnées par softkey. Facteur(s) d'étirement ou de compression spécifique(s) aux axes Plage de programmation : 0,000001 à 99,999999 Coordonnées du centre : centre de l'agrandissement ou de la réduction spécifique à l'axe. Plage de programmation : -99999,9999 à 99999,9999 Exemple 25 CALL LBL 1 26 CYCL DEF 26.0 FACT. ECHELLE AXE 27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20 28 CALL LBL 1 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 227 7 Cycles : conversions de coordonnées | PLAN D'USINAGE (cycle 19, DIN/ISO : G80, option 1) 7.8 PLAN D'USINAGE (cycle 19, DIN/ISO : G80, option 1) Effet Dans le cycle 19, vous définissez la position du plan d'usinage – position de l'axe d'outil par rapport au système de coordonnées machine – en introduisant les angles d'inclinaison. Vous pouvez définir la position du plan d'usinage de deux manières : Introduire directement la position des axes inclinés Définir la position du plan d'usinage en introduisant jusqu'à trois rotations (angles dans l'espace) du système de coordonnées machine. Pour déterminer les angles dans l'espace, définir une coupe perpendiculaire au plan d'usinage incliné, la valeur à indiquer est l'angle de cette coupe vu de l'axe d'inclinaison. Deux angles dans l'espace suffisent pour définir clairement toute position d'outil dans l'espace. Remarquez que la position du système de coordonnées incliné et donc des déplacements dans le système incliné dépendent de la manière dont le plan incliné est défini. Si vous programmez la position du plan d'usinage avec des angles dans l'espace, la commande calcule automatiquement les positions angulaires requises pour les axes inclinés et les mémorise aux paramètres Q120 (axe A) à Q122 (axe C). Si deux solutions se présentent, la commande sélectionne la trajectoire la plus courte – à partir de la position actuelle des axes rotatifs. L'ordre des rotations destinées au calcul de position du plan est définie : la commande fait tout d'abord pivoter l'axe A, puis l'axe B, et enfin l'axe C. Le cycle 19 est actif à partir du moment où il a été défini dans le programme CN. Dès que vous déplacez un axe dans le système incliné, la correction de cet axe est activée. Si la correction doit agir sur tous les axes, vous devez déplacer tous les axes. Si vous avez réglé la fonction Exécution de programme en incliné sur Activé en Mode Manuel, la valeur angulaire entrée dans ce menu sera écrasée par le cycle 19 Plan d'usinage. 228 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées | PLAN D'USINAGE (cycle 19, DIN/ISO : G80, option 1) Attention lors de la programmation ! Le fonction d’Inclin. plan d'usinage sont adaptées à la machine et à la commande par le constructeur de la machine. Le constructeur de la machine définit´si les angles programmés doivent être interprétés par la commande comme coordonnées des axes rotatifs ou comme composantes angulaires d'un plan incliné (angle dans l'espace). Le paramètre machine CfgDisplayCoordSys (n°127501), disponible en option, vous permet de choisir le système de coordonnées dans lequel l'affichage d’état doit afficher un décalage de point zéro actif. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Le cycle ne peut être utilisé qu'en mode FUNCTION MODE TURN, lorsque celui-ci est exécuté avec une cinématique de coulisseau porte-outil. Dans la mesure où les valeurs d'axes rotatifs non programmées sont toujours interprétées comme valeurs non modifiées, définissez toujours les trois angles dans l'espace, même si un ou plusieurs de ces angles ont la valeur 0. L’inclinaison du plan d’usinage est toujours exécutée autour du point zéro courant. Si vous utilisez le cycle 19 avec la fonction M120 active, la commande annule automatiquement la correction de rayon et la fonction M120. Programmer l'usinage comme vous le feriez dans un plan d'usinage non incliné. Lorsque vous appelez de nouveau le cycle pour d'autres angles, vous n'avez pas besoin de réinitialiser l'usinage. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 229 7 Cycles : conversions de coordonnées | PLAN D'USINAGE (cycle 19, DIN/ISO : G80, option 1) Paramètres du cycle Axe et angle de rotation? : entrer l'axe rotatif avec son angle de rotation ; programmer les axes rotatifs A, B et C via les softkeys. Plage de programmation : -360,000 à 360,000 Si la commande positionne automatiquement les axes rotatifs, vous avez encore la possibilité de programmer les paramètres suivants : Avance? F= : vitesse de déplacement de l'axe rotatif lors d'un positionnement automatique. Plage de programmation : 0 à 99999,999 Distance d'approche? (en incrémental) : la commande positionne la tête pivotante de manière à ce que la position de l'outil, augmentée de la la valeur de la distance de sécurité, ne soit pas modifiée par rapport à la pièce. Plage de programmation : 0 à 99999,9999 230 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées | PLAN D'USINAGE (cycle 19, DIN/ISO : G80, option 1) Désactivation Pour réinitialiser l'angle d'inclinaison, définir de nouveau le cycle Plan d'usinage. Programmer 0° pour tous les axes rotatifs. Ensuite, définir de nouveau le cycle Plan d'usinage. Et confirmer en appuyant sur la touche NO ENT pour répondre à la question posée. La fonction est ainsi désactivée. Positionner les axes rotatifs Consultez le manuel de votre machine ! Le constructeur de la machine définit si le cycle 19 doit positionner automatiquement les axes rotatifs ou bien si vous devez les positionner manuellement dans le programme CN. Positionner les axes rotatifs manuellement Si le cycle 19 ne positionne pas automatiquement les axes rotatifs, vous devez les positionner séparément dans une séquence L, à la suite de la Définition du cycle. Si vous utilisez des angles d'axe, vous pouvez définir les valeurs des axes directement dans la séquence L. Si vous travaillez avec des angles dans l'espace, utilisez dans ce cas les paramètres Q120 (valeur d'axe A), Q121 (valeur d'axe B) et Q122 (valeur d'axe C) définis par le cycle 19. Lors du positionnement manuel, utilisez toujours les positions d'axes rotatifs enregistrées aux paramètres Q120 à Q122. N'utiliser pas des fonctions telles que M94 (réduction de l'affichage angulaire) pour éviter les incohérences entre les positions effectives et les positions nominales des axes rotatifs dans le cas d'appels multiples. Exemple 10 L Z+100 R0 FMAX 11 L X+25 Y+10 R0 FMAX 12 CYCL DEF 19.0 PLAN D'USINAGE Définir l’angle dans l'espace pour le calcul de la correction 13 CYCL DEF 19.1 A+0 B+45 C+0 14 L A+Q120 C+Q122 R0 F1000 Positionner les axes rotatifs en utilisant les valeurs calculées par le cycle 19 15 L Z+80 R0 FMAX Activer la correction dans l’axe de broche 16 L X-8.5 Y-10 R0 FMAX Activer la correction dans le plan d’usinage HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 231 7 Cycles : conversions de coordonnées | PLAN D'USINAGE (cycle 19, DIN/ISO : G80, option 1) Positionner les axes rotatifs automatiquement Si le cycle 19 positionne automatiquement les axes rotatifs : La CN ne peut positionner automatiquement que les axes asservis. Dans la définition du cycle, vous devez programmer, en plus des angles d'inclinaison, une distance d'approche et une avance qui vous permettront de positionner les axes inclinés. N'utiliser que des outils pré-réglés (toute la longueur d'outil doit être définie). Dans l'opération d'inclinaison, la position de la pointe de l'outil reste pratiquement inchangée par rapport à la pièce La CN exécute la procédure d'inclinaison avec la dernière avance programmée (l'avance maximale possible dépend de la complexité de la tête ou de la table pivotante). Exemple 10 L Z+100 R0 FMAX 11 L X+25 Y+10 R0 FMAX 12 CYCL DEF 19.0 PLAN D'USINAGE Définir l’angle pour le calcul de la correction 13 CYCL DEF 19.1 A+0 B+45 C+0 F5000 ABST50 Définir aussi l'avance et la distance 14 L Z+80 R0 FMAX Activer la correction dans l’axe de broche 15 L X-8.5 Y-10 R0 FMAX Activer la correction dans le plan d’usinage Affichage de positions dans le système incliné Les positions affichées (NOM et EFF) ainsi que l'affichage du point zéro dans l'affichage d'état supplémentaire se réfèrent au système de coordonnées incliné lorsque le cycle 19 est activé. Tout de suite après la définition du cycle, la position affichée ne coïncide donc plus avec les coordonnées de la dernière position programmée avant le cycle 19. Surveillance de la zone d’usinage Dans le système de coordonnées incliné, la commande ne contrôle que les axes à déplacer aux fins de course. Sinon, la commande émet un message d'erreur. 232 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées | PLAN D'USINAGE (cycle 19, DIN/ISO : G80, option 1) Positionnement dans le système incliné Dans le système incliné, vous pouvez, avec la fonction auxiliaire M130, accoster des positions qui se réfèrent au système de coordonnées non incliné. Même les positionnements qui comportent des séquences linéaires se référant au système de coordonnées machine (séquences CN avec M91 ou M92) peuvent être exécutés avec le plan d'usinage incliné. Restrictions : Le positionnement s'effectue sans correction de longueur Le positionnement s'effectue sans correction de la géométrie de la machine. Les corrections de rayon d'outils ne sont pas admises. Combinaison avec d’autres cycles de conversion de coordonnées Si vous combinez des cycles de conversion de coordonnées, il faut veiller à ce que l'inclinaison du plan d'usinage se fasse toujours autour du point zéro actif. Vous pouvez exécuter un décalage du point zéro avant d'activer le cycle 19 : vous décalez alors le "système de coordonnées machine". Si vous décalez le point zéro après avoir activé le cycle 19, vous décalez alors le "système de coordonnées incliné". Important : en annulant les cycles, suivez l’ordre inverse de celui que vous avez utilisé en les définissant : 1. Activer décalage du point zéro 2. Activer l'Inclin. plan d'usinage 3. Activer la rotation ... Usinage de la pièce ... 1. Annuler la rotation 2. Réinitialiser l'Inclin. plan d'usinage 3. Annuler le décalage du point zéro HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 233 7 Cycles : conversions de coordonnées | PLAN D'USINAGE (cycle 19, DIN/ISO : G80, option 1) Marche à suivre lorsque vous travaillez avec le cycle 19 Plan d'usinage Procédez comme suit : Créer un programme CN Fixer la pièce Définir le point d'origine Lancer le programme CN Créer le programme CN : Appeler l'outil défini Dégager l'axe de broche Positionner les axes rotatifs Au besoin, activer le décalage du point zéro Définir le cycle 19 PLAN D'USINAGE Déplacer tous les axes principaux (X, Y, Z) pour activer la correction Au besoin, définir le cycle 19 avec d'autres angles Programmer une réinitialisation du cycle 19 pour tous les axes rotatifs à 0° Définir de nouveau le cycle 19 pour désactiver le plan d'usinage Au besoin, réinitialiser le décalage du point zéro Si nécessaire, positionner les axes rotatifs à la position 0° Il existe plusieurs manières de définir le point d'origine : Manuelle par effleurement Par une commande avec un palpeur 3D HEIDENHAIN De manière automatique avec un palpeur 3D HEIDENHAIN Informations complémentaires : manuel utilisateur Configuration, test et exécution de programmes CN Informations complémentaires : "Cycles palpeurs : initialisation automatique des points d'origine", Page 445 234 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées | INIT. PT DE REF. (cycle 247, DIN/ISO : G247) 7.9 INIT. PT DE REF. (cycle 247, DIN/ISO : G247) Effet Avec le cycle Initialisation du point d'origine, vous pouvez activer un point d’origine défini dans le tableau de points d’origine comme nouveau point d'origine. À l'issue d'une définition du cycle Initialisation du point d'origine, toutes les coordonnées saisies et tous les décalages de point zéro (en absolu et en incrémental) se réfèrent au nouveau point d’origine. Affichage d'état Dans l'affichage d'état, la commande affiche le numéro du point d’origine actif derrière le symbole du point d'origine. Attention avant de programmer! Ce cycle peut être exécuté en mode FUNCTION MODE MILL, FUNCTION MODE TURN et en mode FUNCTION DRESS. Lorsqu'un point d'origine est activé depuis le tableau de points d’origine, la commande annule le décalage de point zéro, l'image miroir, la rotation, le facteur d'échelle et le facteur d'échelle spécifique aux axes. Si vous activez le point d’origine numéro 0 (ligne 0), vous activez alors le dernier point d'origine que vous avez défini en Mode Manuel ou en mode Manivelle électronique. Le cycle 247 agit également en mode Test de programme. Paramètres du cycle Numéro point de référence? : vous entrez le numéro du point d’origine de votre choix figurant dans le tableau de points d’origine. Sinon, vous pouvez également utiliser la softkey SELECTION pour sélectionner le point d'origine de votre choix directement dans le tableau de points d’origine. Plage de programmation : 0 à 65 535 Exemple 13 CYCL DEF 247 INIT. PT DE REF. Q339=4 ;NUMERO POINT DE REF. Affichages d’état Dans l'affichage d'état supplémentaire (INFOS POSITION), la commande indique le numéro de preset actif à la suite du dialogue Pt réf.. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 235 7 Cycles : conversions de coordonnées | Exemples de programmation 7.10 Exemples de programmation Exemple : Cycles de conversion de coordonnées Déroulement du programme Conversions de coordonnées dans le programme principal Usinage dans le sous-programme 0 BEGIN PGM CONVER MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-20 Définition de la pièce brute 2 BLK FORM 0.2 X+130 X+130 Z+0 3 TOOL CALL 1 Z S4500 Appel d'outil 4 L Z+250 R0 FMAX Dégager l'outil 5 CYCL DEF 7.0 POINT ZERO Décalage du point zéro au centre 6 CYCL DEF 7.1 X+65 7 CYCL DEF 7.2 Y+65 8 CALL LBL 1 Appeler l'opération de fraisage 9 LBL 10 Définir un label pour la répétition de parties de programme 10 CYCL DEF 10.0 ROTATION Rotation de 45° (en incrémental) 11 CYCL DEF 10.1 IROT+45 12 CALL LBL 1 Appeler l'opération de fraisage 13 CALL LBL 10 REP 6/6 Saut en arrière au LBL 10 ; six fois au total 14 CYCL DEF 10.0 ROTATION Désactiver la rotation 15 CYCL DEF 10.1 ROT+0 16 CYCL DEF 7.0 POINT ZERO Réinitialisation du point zéro 17 CYCL DEF 7.1 X+0 18 CYCL DEF 7.2 Y+0 19 L Z+250 R0 FMAX M2 Dégagement de l'outil, fin du programme 20 LBL 1 Sous-programme 1 21 L X+0 Y+0 R0 FMAX Définition de l'opération de fraisage 22 L Z+2 R0 FMAX M3 23 L Z-5 R0 F200 24 L X+30 RL 25 L IY+10 26 RND R5 27 L IX+20 28 L IX+10 IY-10 236 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 7 Cycles : conversions de coordonnées | Exemples de programmation 29 RND R5 30 L IX-10 IY-10 31 L IX-20 32 L IY+10 33 L X+0 Y+0 R0 F5000 34 L Z+20 R0 FMAX 35 LBL 0 36 END PGM KOUMR MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 237 8 Cycles d'usinage : définitions de motifs 8 Cycles d'usinage : définitions de motifs | Principes de base 8.1 Principes de base Vue d'ensemble La commande propose trois cycles qui permettent d'usiner des motifs de points : Softkey Cycle Page 220 MOTIFS DE POINTS SUR UN CERCLE 242 221 MOTIFS DE POINTS SUR GRILLE 245 224 MOTIF CODE DATAMATRIX 247 Les cycles d'usinage suivants peuvent être combinés avec les cycles 220, 221 et 224 : Cycle 200 PERCAGE Cycle 201 ALES.A L'ALESOIR Cycle 203 PERCAGE UNIVERSEL Cycle 205 PERC. PROF. UNIVERS. Cycle 208 FRAISAGE DE TROUS Cycle 240 CENTRAGE Cycle 251 POCHE RECTANGULAIRE Cycle 252 POCHE CIRCULAIRE Les cycles d'usinage suivants ne peuvent être combinés qu'avec les cycles 220 et 221 : Cycle 202 ALES. A L'OUTIL Cycle 204 CONTRE-PERCAGE Cycle 206 TARAUDAGE Cycle 207 TARAUDAGE RIGIDE Cycle 209 TARAUD. BRISE-COP. Cycle 253 RAINURAGE Cycle 254 Cycle 256 RAINURE CIRC. (combinable uniquement avec le cycle 221) TENON RECTANGULAIRE Cycle 257 TENON CIRCULAIRE Cycle 262 FRAISAGE DE FILETS Cycle 263 FILETAGE SUR UN TOUR Cycle 264 FILETAGE AV. PERCAGE Cycle 265 FILET. HEL. AV.PERC. Cycle 267 FILET.EXT. SUR TENON 240 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 8 Cycles d'usinage : définitions de motifs | Principes de base Si vous devez usiner des motifs de points irréguliers, utilisez dans ce cas les tableaux de points avec CYCL CALL PAT . Grâce à la fonction PATTERN DEF, vous disposez d'autres motifs de points réguliers. Informations complémentaires : "Tableaux de points", Page 71 Informations complémentaires : "Motif d'usinage PATTERN DEF", Page 64 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 241 8 Cycles d'usinage : définitions de motifs | MOTIF DE POINTS SUR CERCLE (cycle 220, DIN/ISO : G220, option 19) 8.2 MOTIF DE POINTS SUR CERCLE (cycle 220, DIN/ISO : G220, option 19) Mode opératoire du cycle 1 La commande positionne l'outil, en avance rapide, au point de départ du premier usinage. Etapes : Approcher le saut de bride (axe de broche) Accoster le point initial dans le plan d'usinage Amener l'outil à la distance d'approche au-dessus de la surface de la pièce (axe de la broche) 2 A partir de cette position, la commande exécute le dernier cycle d'usinage défini. 3 La commande positionne ensuite l'outil au point de départ de l'usinage suivant, avec un mouvement linéaire ou avec un mouvement circulaire. L'outil se trouve alors à la distance d'approche (ou au saut de bride). 4 Ce processus (1 à 3) est répété jusqu'à ce que toutes les opérations d'usinage aient été exécutées. Attention lors de la programmation! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Le cycle 220 est actif avec DEF. Le cycle 220 appelle aussi automatiquement le dernier cycle d'usinage défini. Si vous combinez un des cycles d'usinage 200 à 209 et 251 à 267 avec le cycle 220 ou avec le cycle 221, ce sont la distance d'approche, la surface de la pièce et le saut de bride du cycle 220 ou 221 qui s'appliquent. Ceci reste applicable dans le programme CN jusqu'à ce que les paramètres concernés soient de nouveau écrasés. Exemple : Si un programme CN cycle 200 est défini avec Q203=0, puis qu'un cycle 220 est programmé avec Q203=-5, alors les CYCL CALL et les appels de M99 seront utilisés avec Q203=-5. Les cycles 220 et 221 écrasent les paramètres mentionnés ci-dessus des cycles d’usinage CALL actifs (si les paramètres programmés sont les mêmes dans les deux cycles). Si vous exécutez ce cycle en mode Pas à pas, la commande s'arrête entre les points d'un motif de points. 242 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 8 Cycles d'usinage : définitions de motifs | MOTIF DE POINTS SUR CERCLE (cycle 220, DIN/ISO : G220, option 19) Paramètres du cycle Q216 Centre 1er axe? (en absolu) : centre du cercle primitif dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q217 Centre 2ème axe? (en absolu) : centre du cercle primitif dans l'axe auxiliaire du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q244 Diamètre cercle primitif? : diamètre du cercle primitif. Plage de programmation : 0 à 99999,9999 Q245 Angle initial? (en absolu) : angle compris entre l'axe principal du plan d'usinage et le point initial du premier usinage sur le cercle primitif. Plage de programmation : -360,000 à 360,000 Q246 Angle final? (en absolu) : angle compris entre l'axe principal du plan d'usinage et le point de départ du dernier usinage sur le cercle primitif (non valable pour les cercles entiers) ; entrer une valeur d'angle final qui soit différente de la valeur de l'angle initial ; si l'angle final est supérieur à l'angle initial, l'usinage sera exécuté dans le sens anti-horaire ; sinon, il sera exécuté dans le sens horaire. Plage de programmation : -360,000 à 360,000 Q247 Incrément angulaire? (en incrémental) : angle séparant deux opérations d'usinage sur le cercle primitif ; si l'incrément angulaire est égal à 0, la commande se base sur l'angle initial, l'angle final et le nombre d'opérations d'usinage pour le calcul. Si un incrément angulaire a été programmé, la commande ne tient pas compte de l'angle final ; le signe de l'incrément angulaire détermine le sens de l'usinage (– = sens horaire) Plage de programmation : -360,000 à 360,000 Q241 Nombre d'usinages? : nombre d'usinage sur le cercle primitif. Plage de programmation : 1 à 99999 Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 53 CYCL DEF 220 CERCLE DE TROUS Q216=+50 ;CENTRE 1ER AXE Q217=+50 ;CENTRE 2EME AXE Q244=80 ;DIA. CERCLE PRIMITIF Q245=+0 ;ANGLE INITIAL Q246=+360 ;ANGLE FINAL Q247=+0 ;INCREMENT ANGULAIRE Q241=8 ;NOMBRE D'USINAGES Q200=2 ;DISTANCE D'APPROCHE Q203=+30 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q301=1 ;DEPLAC. HAUT. SECU. Q365=0 ;TYPE DEPLACEMENT 243 8 Cycles d'usinage : définitions de motifs | MOTIF DE POINTS SUR CERCLE (cycle 220, DIN/ISO : G220, option 19) Q301 Déplacement à haut. sécu. (0/1)?: vous définissez ici comment l'outil doit se déplacer entre chaque usinage : 0 : il doit se déplacer à la distance d'approche entre chaque usinage 1 : il doit se déplacer au saut de bride entre chaque usinage. Q365 Type déplacement? ligne=0/arc=1 : vous définissez ici avec quelle fonction de contournage l'outil doit se déplacer entre chaque usinage : 0 : il doit se déplacer en ligne droite entre chaque usinage 1 : il doit se déplacer en cercle, sur le diamètre du cercle primitif, entre chaque usinage 244 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 8 Cycles d'usinage : définitions de motifs | MOTIF DE POINTS EN GRILLE (cycle 221, DIN/ISO : G221, option 19) 8.3 MOTIF DE POINTS EN GRILLE (cycle 221, DIN/ISO : G221, option 19) Mode opératoire du cycle 1 La commande déplace automatiquement l'outil de sa position actuelle au point de départ du premier usinage. Etapes : Approcher le saut de bride (axe de broche) Accoster le point initial dans le plan d'usinage Amener l'outil à la distance d'approche au-dessus de la surface de la pièce (axe de la broche) 2 A partir de cette position, la commande exécute le dernier cycle d'usinage défini. 3 La commande positionne ensuite l'outil au point de départ de l'usinage suivant, dans le sens positif de l'axe principal. L'outil se trouve alors à la distance d'approche (ou au saut de bride). 4 Cette procédure (1 à 3) se répète jusqu'à ce que tous les usinages soient exécutés sur la première ligne. L'outil se trouve au dernier point de la première ligne. 5 La commande amène ensuite l'outil au dernier point de la deuxième ligne, où elle effectue l'usinage. 6 A partir de là, la commande amène l'outil au point de départ de l'usinage suivant, dans le sens négatif de l'axe principal. 7 Ce processus (6) est répété jusqu’à ce que toutes les opérations d’usinage soient exécutées sur la deuxième ligne. 8 La commande amène ensuite l'outil au point de départ de la ligne suivante. 9 Toutes les autres lignes sont usinées suivant un déplacement pendulaire. Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Le cycle 221 est actif avec DEF. Le cycle 221 appelle aussi automatiquement le dernier cycle d'usinage défini. Si vous combinez un des cycles d'usinage 200 à 209 et 251 à 267 avec le cycle 221, ce sont la distance d'approche, la surface de la pièce, le saut de bride et la position de rotation du cycle 221 qui s'appliquent. Si vous utilisez le cycle 254 Rainure circulaire en liaison avec le cycle 221, la position de rainure 0 est interdite. Si vous exécutez ce cycle en mode Pas à pas, la commande s'arrête entre les points d'un motif de points. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 245 8 Cycles d'usinage : définitions de motifs | MOTIF DE POINTS EN GRILLE (cycle 221, DIN/ISO : G221, option 19) Paramètres du cycle Q225 Point initial 1er axe? (en absolu) : coordonnée du deuxième point de départ dans l'axe principal du plan d'usinage Q226 Point initial 2ème axe? (en absolu) : coordonnée du point de départ dans l'axe auxiliaire du plan d'usinage Q237 Distance 1er axe? (en incrémental) : distance entre les différents points de la ligne Q238 Distance 2ème axe? (en incrémental) : distance entre chaque ligne Q242 Nombre de colonnes? : nombre d'usinages sur la ligne Q243 Nombre de lignes? : nombre de lignes Q224 Position angulaire? (en absolu) : angle de rotation de l'ensemble du motif de perçages ; le centre de rotation se trouve sur le point de départ. Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)?: vous définissez ici comment l'outil doit se déplacer entre chaque usinage : 0 : il doit se déplacer à la distance d'approche entre chaque usinage 1 : il doit se déplacer au saut de bride entre chaque usinage. Exemple 54 CYCL DEF 221 GRILLE DE TROUS Q225=+15 ;PT INITIAL 1ER AXE Q226=+15 ;PT INITIAL 2EME AXE Q237=+10 ;DISTANCE 1ER AXE Q238=+8 ;DISTANCE 2EME AXE Q242=6 ;NOMBRE DE COLONNES Q243=4 ;NOMBRE DE LIGNES Q224=+15 ;POSITION ANGULAIRE Q200=2 ;DISTANCE D'APPROCHE Q203=+30 ;COORD. SURFACE PIECE 246 Q204=50 ;SAUT DE BRIDE Q301=1 ;DEPLAC. HAUT. SECU. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : définitions de motifs | MOTIF CODE DATAMATRIX (cycle 224, DIN/ISO : G224, option 19) 8.4 MOTIF CODE DATAMATRIX (cycle 224, DIN/ISO : G224, option 19) Déroulement du cycle Avec le cycle 224 MOTIF DATAMATRIX CODE, vous pouvez convertir des textes en code DataMatrix. Celui-ci sert de motif de points à un cycle d'usinage défini au préalable. 1 La CN amène automatiquement l'outil de sa position actuelle au point de départ programmé. Celui-ci se trouve au coin inférieur gauche. Chronologie : Approcher le saut de bride (axe de la broche) Accoster le point initial dans le plan d'usinage Amener l'outil à la Distance de sécurité, au-dessus de la surface de la pièce (axe de broche) 2 La CN décale ensuite l'outil dans le sens positif de l'axe auxiliaire, au premier point de départ 1 de la première ligne. 3 A partir de cette position, la commande exécute le dernier cycle d'usinage défini. 4 La CN positionne ensuite l'outil dans le sens positif de l'axe principal, au deuxième point de départ 2 de l'usinage suivant. L'outil reste alors à la distance d'approche. 5 Cette procédure se répète jusqu'à ce que toutes les opérations d'usinage de la première ligne soient exécutées. L'outil se trouve alors au dernier point 3 de la première ligne. 6 La CN déplace ensuite l'outil dans le sens négatif, le long de l'axe principal et de l'axe auxiliaire, jusqu'au premier point de départ 4 de la ligne suivante. 7 L'usinage est ensuite exécuté. 8 Ces procédures se répètent jusqu'à ce que le code DataMatrix soit reproduit. L'usinage se termine dans le coin inférieur droit 5. 9 Pour finir, la CN amène l'outil au saut de bride programmé. 1 1 2 4 3 4 5 6 7 8 9 10 2 3 5 Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous combinez un des cycles d'usinage avec cycle 224, ce sont la Distance de sécurité, la surface de coordonnées et le saut de bride du cycle 224 qui s'appliquent. Utiliser la simulation graphique pour vérifier le déroulement Tester un programme CN ou une section de programme avec précaution en mode Exécution PGM pas-à-pas Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Le cycle 224 est actif avec DEF. Le cycle 224 appelle aussi automatiquement le dernier cycle d'usinage défini. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 247 8 8 Cycles d'usinage : définitions de motifs | MOTIF CODE DATAMATRIX (cycle 224, DIN/ISO : G224, option 19) Paramètres du cycle Q225 Point initial 1er axe? (en absolu) : coordonnée dans le coin inférieur gauche de l'axe principal Q226 Point initial 2ème axe? (en absolu) : définition d'une coordonnée dans le coin inférieur gauche du code de l'axe auxiliaire QS501 Texte? Texte à intégrer entre guillemets. Longueur de texte autorisée : 255 caractères Q458 Taille de cellule/motif (1/2)? : vous définissez comment le code DataMatrix est décrit au paramètre Q459 : 1: espacement de cellules 2: taille du motif Q459 Taille du motif ? (en incrémental) : définition de l'espacement des cellules ou de la taille du motif : Si Q458=1 : espace entre la première et la dernière cellule (en partant du centre des cellules) Si Q458=2 : espace entre la première et la dernière ligne (en partant du centre des cellules) Plage de programmation : 0 à 99999,9999 Q224 Position angulaire? (en absolu) : angle de rotation de l'ensemble du motif de perçages ; le centre de rotation se trouve sur le point de départ. Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q459 Q458=2 Q459 Q458=1 Q226 Q225 + Q224 Q203 Q200 Q204 Exemple 54 CYCL DEF 224 MOTIF DATAMATRIX CODE Q225=+0 ;PT INITIAL 1ER AXE Q226=+0 ;PT INITIAL 2EME AXE QS501="ABC";TEXTE 248 Q458=+1 ;SELEC. TAILLE Q459=+1 ;TAILLE Q224=+0 ;POSITION ANGULAIRE Q200=+2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 8 Cycles d'usinage : définitions de motifs | Exemples de programmation 8.5 Exemples de programmation Exemple : Cercles de trous 0 BEGIN PGM MOTIF PERCAGES MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-40 Définition de la pièce brute 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S3500 Appel d'outil 4 L Z+250 R0 FMAX M3 Dégager l'outil 5 CYCL DEF 200 PERCAGE Définition du cycle Perçage Q200=2 ;DISTANCE D'APPROCHE Q201=-15 ;PROFONDEUR Q206=250 ;AVANCE PLONGEE PROF. Q202=4 ;PROFONDEUR DE PASSE Q210=0 ;TEMPO. EN HAUT Q203=+0 ;COORD. SURFACE PIECE Q204=0 ;SAUT DE BRIDE Q211=0.25 ;TEMPO. AU FOND Q395=0 ;REFERENCE PROFONDEUR 6 CYCL DEF 220 CERCLE DE TROUS Q216=+30 ;CENTRE 1ER AXE Q217=+70 ;CENTRE 2EME AXE Q244=50 ;DIA. CERCLE PRIMITIF Q245=+0 ;ANGLE INITIAL Q246=+360 ;ANGLE FINAL Q247=+0 ;INCREMENT ANGULAIRE Q241=10 ;NOMBRE D'USINAGES Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Définition du cycle Cercle de trous 1, CYCL 200 est automatiquement appelé, Q200, Q203 et Q204 sont actifs à partir du cycle 220 249 8 Cycles d'usinage : définitions de motifs | Exemples de programmation Q204=100 ;SAUT DE BRIDE Q301=1 ;DEPLAC. HAUT. SECU. Q365=0 ;TYPE DEPLACEMENT 7 CYCL DEF 220 CERCLE DE TROUS Q216=+90 ;CENTRE 1ER AXE Q217=+25 ;CENTRE 2EME AXE Q244=70 ;DIA. CERCLE PRIMITIF Q245=+90 ;ANGLE INITIAL Q246=+360 ;ANGLE FINAL Q247=30 ;INCREMENT ANGULAIRE Q241=5 ;NOMBRE D'USINAGES Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=100 ;SAUT DE BRIDE Q301=1 ;DEPLAC. HAUT. SECU. Q365=0 ;TYPE DEPLACEMENT 8 L Z+250 R0 FMAX M2 Définition du cycle Cercle de trous 2, CYCL 200 est automatiquement appelé, Q200, Q203 et Q204 sont actifs à partir du cycle 220 Dégagement de l'outil, fin du programme 9 END PGM MOTIF DE PERCAGES MM 250 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour 9 Cycles d'usinage : poche avec contour | Cycles SL 9.1 Cycles SL Principes de base Les cycles SL permettent d'utiliser jusqu'à douze contours partiels (poches ou îlots) pour construire des contours complexes. Les différents contours partiels sont définis comme sous-programmes. A partir de la liste des contours partiels (numéros de sous-programmes) que vous programmez dans le cycle 14 CONTOUR, la commande calcule l'ensemble du contour. La taille de la mémoire réservée à un cycle SL est limitée. Dans un cycle SL, vous pouvez programmer au maximum 16384 éléments de contour. En interne, les cycles SL exécutent d'importants calculs complexes ainsi que les opérations d'usinage qui en résultent. Par sécurité, il convient d'exécuter dans tous les cas un test graphique avant l'usinage proprement dit! Vous pouvez ainsi contrôler de manière simple si l'opération d'usinage calculée par la commande se déroule correctement. Si vous utilisez des paramètres Q de type QL locaux dans un programme de contour, il vous faudra aussi les affecter ou les calculer dans le sous-programme de contour. Caractéristiques des sous-programmes Les conversions de coordonnées sont autorisées – si celles-ci sont programmées dans les contours partiels, elles agissent également dans les sous-programmes suivants ; elles n'ont toutefois pas besoin d'être réinitialisées après l'appel du cycle. La commande identifie une poche lorsque vous parcourez le contour de l'intérieur, par exemple lorsque vous décrivez le contour dans le sens horaire avec correction de rayon RR. La commande reconnaît un îlot lorsque vous parcourez le contour de l'extérieur, par exemple lorsque vous décrivez le contour dans le sens horaire avec correction de rayon RL. Les sous-programmes ne doivent pas contenir de coordonnées dans l’axe de broche Programmez toujours les deux axes dans la première séquence CN du sous-programme Si vous utilisez des paramètres Q, n'effectuez les calculs et les affectations qu'au sein du sous-programme de contour concerné. 252 Schéma : travail avec les cycles SL 0 BEGIN PGM SL2 MM ... 12 CYCL DEF 14 CONTOUR ... 13 CYCL DEF 20 DONNEES DU CONTOUR ... ... 16 CYCL DEF 21 PRE-PERCAGE ... 17 CYCL CALL ... 18 CYCL DEF 22 EVIDEMENT ... 19 CYCL CALL ... 22 CYCL DEF 23 FINITION EN PROF. ... 23 CYCL CALL ... 26 CYCL DEF 24 FINITION LATERALE ... 27 CYCL CALL ... 50 L Z+250 R0 FMAX M2 51 LBL 1 ... 55 LBL 0 56 LBL 2 ... 60 LBL 0 ... 99 END PGM SL2 MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | Cycles SL Caractéristiques des cycles d'usinage La commande positionne automatiquement l'outil à la distance d'approche avant chaque cycle – positionnez l'outil à une position sûre avant chaque appel de cycle. Chaque niveau de profondeur est fraisé sans relevage de l'outil ; les îlots sont contournés latéralement. Le rayon des "angles intérieurs" est programmable. L'outil ne reste pas immobile, les marques de brise-copeaux sont évitées (vaut pour la trajectoire la plus externe lors de l'évidement et de la finition latérale). En cas de finition latérale, la commande déplace l'outil sur une trajectoire circulaire tangentielle. En cas de finition en profondeur, la commande déplace également l'outil selon une trajectoire circulaire jusqu'à la pièce (par ex. : axe de la broche Z : trajectoire circulaire dans le plan Z/X). La commande usine le contour en continu, en avalant ou en opposition. Les données d'usinage telles que la profondeur de fraisage, les surépaisseurs et la distance d'approche sont à renseigner dans le cycle 20 DONNEES DU CONTOUR. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 253 9 Cycles d'usinage : poche avec contour | Cycles SL Résumé Softkey Cycle Page 14 CONTOUR (impératif) 255 20 DONNEES DU CONTOUR (impératif) 260 21 PRE-PERCAGE (utilisation facultative) 262 22 EVIDEMENT (impératif) 264 23 FINITION EN PROFONDEUR (utilisation facultative) 269 24 FINITION LATERALE (utilisation facultative) 271 Cycles étendus : Softkey 254 Cycle Page 270 DONNEES TRACE CONTOUR 275 25 TRACE DE CONTOUR 277 275 RAINURE DE CONTOUR FRAISAGE EN TOURBILLON 281 276 TRACE DE CONTOUR 3D 287 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | CONTOUR (cycle 14, DIN/ISO : G37) 9.2 CONTOUR (cycle 14, DIN/ISO : G37) Attention lors de la programmation! Dans le cycle 14 CONTOUR, listez tous les sous-programmes qui doivent être superposés pour former un contour entier. Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . Le cycle 14 est actif avec DEF, ce qui signifie qu'il est actif dès qu'il est défini dans le programme CN. Vous pouvez lister jusqu'à 12 sous-programmes (contours partiels) dans le cycle 14. Paramètres du cycle Numéros de labels du contour : entrer tous les numéros de labels des différents sousprogrammes qui doivent être superposés à un contour. Confirmer chaque numéro avec la touche ENT. Mettre fin aux saisies avec la touche END Saisie des numéros de 12 sousprogrammes max., de 1 à 65 535 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 255 9 Cycles d'usinage : poche avec contour | Contours superposés 9.3 Contours superposés Principes de base Un nouveau contour peut être construit en superposant des poches et des îlots. De cette manière, vous pouvez agrandir la surface d'une poche par superposition d'une autre poche ou la réduire avec un îlot. Exemple 12 CYCL DEF 14.0 CONTOUR 13 CYCL DEF 14.1 LABEL CONTOUR1/2/3/4 Sous-programmes : poches superposées Les exemples suivants sont des sous-programmes de contours qui sont appelés dans un programme principal du cycle 14 CONTOUR. Les poches A et B se superposent. La commande calcule les points d'intersection S1 et S2. Ils n'ont pas besoin d'être programmées. Les poches sont programmées comme des cercles entiers. Sous-programme 1: Poche A 51 LBL 1 52 L X+10 Y+50 RR 53 CC X+35 Y+50 54 C X+10 Y+50 DR55 LBL 0 Sous-programme 2: Poche B 56 LBL 2 57 L X+90 Y+50 RR 58 CC X+65 Y+50 59 C X+90 Y+50 DR60 LBL 0 256 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | Contours superposés Surface „d'addition“ Les deux surfaces partielles A et B, y compris leurs surfaces communes, doivent être usinées : Les surfaces A et B doivent être des poches. La première poche (dans le cycle 14) doit débuter à l’extérieur de la seconde Surface A : 51 LBL 1 52 L X+10 Y+50 RR 53 CC X+35 Y+50 54 C X+10 Y+50 DR55 LBL 0 Surface B : 56 LBL 2 57 L X+90 Y+50 RR 58 CC X+65 Y+50 59 C X+90 Y+50 DR60 LBL 0 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 257 9 Cycles d'usinage : poche avec contour | Contours superposés Surface „de soustraction“ La surface A doit être usinée sans la partie recouverte par B: La surface A doit être une poche et la surface B, un îlot. A doit débuter à l’extérieur de B. B doit commencer à l'intérieur de A Surface A : 51 LBL 1 52 L X+10 Y+50 RR 53 CC X+35 Y+50 54 C X+10 Y+50 DR55 LBL 0 Surface B : 56 LBL 2 57 L X+40 Y+50 RL 58 CC X+65 Y+50 59 C X+40 Y+50 DR60 LBL 0 258 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | Contours superposés Surface „d'intersection“ La surface commune de recouvrement de A et de B doit être usinée. (Les surfaces sans recouvrement ne doivent pas être usinées.) A et B doivent être des poches. A doit commencer à l’intérieur de B. Surface A : 51 LBL 1 52 L X+60 Y+50 RR 53 CC X+35 Y+50 54 C X+60 Y+50 DR55 LBL 0 Surface B : 56 LBL 2 57 L X+90 Y+50 RR 58 CC X+65 Y+50 59 C X+90 Y+50 DR60 LBL 0 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 259 9 Cycles d'usinage : poche avec contour | DONNEES DE CONTOUR (cycle 20, DIN/ISO : G120, option 19) 9.4 DONNEES DE CONTOUR (cycle 20, DIN/ISO : G120, option 19) Attention lors de la programmation ! Dans le cycle 20, vous programmez les données d'usinage qui sont destinées aux sous-programmes avec les contours partiels. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Les cycle 20 est actif avec DEF, ce qui signifie qu’il est actif dès lors qu’il est défini dans le programme CN. Les données d'usinage renseignées dans le cycle 20 sont valables pour les cycles 21 à 24. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez la profondeur à 0, la commande exécutera ce cycle à la profondeur 0. Si vous utilisez des cycles SL dans les programmes avec paramètres Q, vous ne devez pas utiliser les paramètres Q1 à Q20 comme paramètres de programme. 260 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | DONNEES DE CONTOUR (cycle 20, DIN/ISO : G120, option 19) Paramètres du cycle Q1 Profondeur de fraisage? (en incrémental) : distance entre la surface de la pièce et le fond de la poche. Plage de programmation : -99999,9999 à 99999,9999 Q2 Facteur de recouvrement? : le résultat de "Q2 x rayon d'outil" donne la valeur de la passe latérale k. Plage de programmation : -0,0001 à 1,9999 Q3 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q4 Surep. finition en profondeur? (en incrémental) : surépaisseur de finition pour la profondeur. Plage de programmation : -99999,9999 à 99999,9999 Q5 Coordonnées surface pièce? (en absolu) : coordonnée absolue de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q6 Distance d'approche? (en incrémental) : distance entre la face frontale de l'outil et le la surface de la pièce. Plage de programmation : 0 à 99999,9999 Q7 Hauteur de securite? (en absolu) : hauteur en valeur absolue à l'intérieur de laquelle aucune collision ne peut se produire avec la pièce (pour positionnement intermédiaire et retrait en fin de cycle) Plage de programmation : -99999,9999 à 99999,9999 Q8 Rayon interne d'arrondi? : rayon d'arrondi au niveau des "angles" intérieurs ; la valeur saisie se réfère à la trajectoire du centre de l'outil et elle est utilisée pour calculer les déplacements en douceur entre les éléments de contour. Q8 n'est pas un rayon que la commande insère comme élément de contour entre les éléments programmés ! Plage de programmation : 0 à 99999,9999 Q9 Sens rotation ? sens horaire= -1 : sens d'usinage des poches Q9 = -1 en opposition pour poche et îlot Exemple 57 CYCL DEF 20 DONNEES DU CONTOUR Q1=-20 ;PROFONDEUR FRAISAGE Q2=1 ;FACTEUR RECOUVREMENT Q3=+0.2 ;SUREPAIS. LATERALE Q4=+0.1 ;SUREP. DE PROFONDEUR Q5=+30 ;COORD. SURFACE PIECE Q6=2 ;DISTANCE D'APPROCHE Q7=+80 ;HAUTEUR DE SECURITE Q8=0.5 ;RAYON D'ARRONDI Q9=+1 ;SENS DE ROTATION Q9 = +1 en avalant pour poche et îlot Vous pouvez vérifier, voire remplacer, les paramètres d'usinage en cas d'interruption du programme. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 261 9 Cycles d'usinage : poche avec contour | PRE-PERÇAGE (cycle 21, DIN/ISO : G121, option 19) 9.5 PRE-PERÇAGE (cycle 21, DIN/ISO : G121, option 19) Mode opératoire du cycle Vous avez recours au cycle 21 PRE-PERÇAGE si l'outil que vous utilisez ensuite pour évider votre contour ne possède pas de tranchant frontal en son centre (DIN 844). Ce cycle perce un trou à l'endroit où vous réaliserez ultérieurement, par exemple, un évidement avec le cycle 22. Pour calculer les points de plongée, le cycle 21 PRE-PERCAGE tient compte de la surépaisseur de finition latérale, de la surépaisseur de finition en profondeur, ainsi que du rayon de l'outil d'évidement. Les points de plongée sont également les points de départ de l'évidement. Avant d'appeler le cycle 21, il vous faut programmer deux autres cycles : Cycle 14 CONTOUR ou SEL CONTOUR - le cycle 21 PREPERÇAGE en a besoin pour calculer la position de perçage dans le plan. Cycle 20 DONNES DE CONTOUR - requis par le cycle 21 PREPERÇAGE, par ex. pour déterminer la profondeur de perçage et la distance d'approche Déroulement du cycle : 1 La commande positionne d'abord l'outil dans le plan (position résultant du contour que vous avez défini au préalable avec le cycle 14 ou SEL CONTOUR et des informations sur l'outil d'évidement). 2 L'outil se déplace ensuite en avance rapide FMAX pour atteindre la distance d'approche (renseignée dans le cycle 20 DONNEES DE CONTOUR) 3 L'outil part de la position actuelle et perce avec l'avance F définie, jusqu'à la première profondeur d'avance. 4 La commande rétracte ensuite l'outil en avance rapide FMAX, puis l'amène à nouveau à une profondeur égale à la première profondeur de passe moins la distance de sécurité t. 5 La commande calcule automatiquement la distance de sécurité : Profondeur de perçage jusqu'à 30 mm: t = 0,6 mm Profondeur de perçage supérieure à 30 mm: t = profondeur de perçage/50 Distance de sécurité max. : 7 mm 6 L'outil perce ensuite avec une profondeur de passe supplémentaire, avec l'avance F définie. 7 La commande répète cette procédure (1 à 4) jusqu'à ce que la profondeur de perçage soit atteinte. La surépaisseur de finition est pour cela prise en compte. 8 L'outil retourne ensuite à la hauteur de sécurité dans l'axe d'outil ou à la dernière position programmée avant le cycle. Dépend des paramètres ConfigDatum, CfgGeoCycle (n °201000), posAfterContPocket (n°201007). 262 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | PRE-PERÇAGE (cycle 21, DIN/ISO : G121, option 19) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. La commande ne tient pas compte d'une valeur Delta DR programmée dans la séquence TOOL CALL pour calculer les points d'usinage de gorge. Dans les zones étroites, il se peut que la commande ne puisse pas effectuer un pré-perçage avec un outil plus gros que l'outil d'ébauche. Si Q13=0, ce sont les données de l'outil qui se trouve dans la broche qui seront utilisées. A la fin du cycle, positionnez votre outil dans le plan de manière absolue (et non incrémentale) si vous avez réglé le paramètre ConfigDatum, CfgGeoCycle (n°201000), posAfterContPocket (n°201007) sur ToolAxClearanceHeight. Paramètres du cycle Q10 Profondeur de passe? (en incrémental) : distance parcourue par l'outil en une passe (signe "–" avec sens d'usinage négatif) Plage de programmation : -99999,9999 à 99999,9999 Q11 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors de sa plongée, en mm/ min. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q13 Numéro/nom outil d'évidement? ou QS13 : numéro ou nom de l'outil d'évidement. Vous pouvez utiliser les softkeys pour reprendre directement l'outil inscrit dans le tableau d'outils. Exemple 58 CYCL DEF 21 PRE-PERCAGE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q10=+5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q13=1 ;OUTIL D'EVIDEMENT 263 9 Cycles d'usinage : poche avec contour | EVIDEMENT (cycle 22, DIN/ISO : G122, option 19) 9.6 EVIDEMENT (cycle 22, DIN/ISO : G122, option 19) Mode opératoire du cycle Définissez les données technologiques pour l'évidement dans le cycle 22 EVIDEMENT. Avant d'appeler le cycle 22, vous devez d'abord programmer d'autres cycles : Cycle 14 CONTOUR ou SEL CONTOUR Cycle 20 DONNEES DE CONTOUR Au besoin, le cycle 21 PRE-PERÇAGE Mode opératoire du cycle 1 La commande positionne l'outil au-dessus du point de plongée. La surépaisseur de finition n'est alors pas prise en compte. 2 Lors de la première profondeur de passe, l'outil fraise le contour de l'intérieur vers l'extérieur, selon l'avance de fraisage Q12 3 L'outil fraise les contours de l'îlot (ici : C/D) avec une approche du contour de la poche (ici : A/B). 4 A l'étape suivante, la commande déplace l'outil à la profondeur de passe suivante et répète la procédure d'évidement jusqu'à ce que la profondeur programmée soit atteinte. 5 L'outil retourne ensuite à la hauteur de sécurité dans l'axe d'outil ou à la dernière position programmée avant le cycle. Dépend des paramètres ConfigDatum, CfgGeoCycle (n °201000), posAfterContPocket (n°201007). 264 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | EVIDEMENT (cycle 22, DIN/ISO : G122, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous avez configuré le paramètre posAfterContPocket (n°201007) sur ToolAxClearanceHeight, à la fin du cycle, la commande positionne l'outil à la hauteur de sécurité, uniquement dans le sens de l'axe d'outil. La commande ne positionne pas l'outil dans le plan d'usinage. Positionner l’outil après la fin du cycle avec toutes les coordonnées du plan d’usinage, par exemple L X+80 Y+0 R0 FMAX Après le cycle, programmer une position absolue et non un déplacement incrémental Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Si nécessaire, utiliser une fraise avec une coupe au centre (DIN 844) ou prépercer avec le cycle 21. Pour les contours de poches avec angles internes aigus, l'utilisation d'un facteur de recouvrement supérieur à un peut laisser de la matière résiduelle lors de l'évidement. Avec le test graphique, vérifier plus particulièrement à la trajectoire la plus intérieure et, si nécessaire, modifier légèrement le facteur de recouvrement. On peut ainsi obtenir une autre répartition des passes, ce qui conduit souvent au résultat souhaité. Lors de la semi-finition, la commande tient compte d'une valeur d'usure DR définie pour l'outil de préévidement. Si la fonction M110 est active pendant l'usinage, l'avance sera réduite d'autant pour les arcs de cercle corrigés à l'intérieur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 265 9 Cycles d'usinage : poche avec contour | EVIDEMENT (cycle 22, DIN/ISO : G122, option 19) Vous définissez le comportement de plongée du cycle 22 dans le paramètre Q19 et dans le tableau d'outils, dans les colonnes ANGLE et LCUTS. Si vous avez défini Q19=0, la commande fait plonger l'outil à la verticale même si un angle de plongée (ANGLE) est défini pour l'outil actif. Si vous avez défini ANGLE=90°, la commande fait plonger l'outil à la verticale. C'est l'avance pendulaire Q19 qui est alors utilisée comme avance de plongée. Si l'avance pendulaire Q19 est définie dans le cycle 22 et que la valeur ANGLE est comprise entre 0.1 et 89,999 dans le tableau d'outils, la commande effectue une plongée hélicoïdale avec la valeur d'ANGLE définie. La commande délivre un message d'erreur si l'avance pendulaire est définie dans le cycle 22 et qu'aucune valeur ANGLE n'est définie dans le tableau d'outils. Si les données géométriques sont telles qu'elles n'autorisent pas une plongée hélicoïdale (rainure), la commande effectuera une plongée pendulaire (la longueur pendulaire est calculée à partir de LCUTS et ANGLE (longueur pendulaire = LCUTS / tan ANGLE)) 266 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | EVIDEMENT (cycle 22, DIN/ISO : G122, option 19) Paramètres du cycle Q10 Profondeur de passe? (en incrémental) : cote de chaque passe en plongée de l'outil. Plage de programmation : -99999,9999 à 99999,9999 Q11 Avance plongee en profondeur? : avance des mouvements de déplacement de l'axe de la broche. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q12 Avance évidement? : avance lors des mouvements de déplacement dans le plan d'usinage. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q18 Outil de pré-évidement? ou QS18 : numéro ou nom de l'outil avec lequel la commande a déjà effectué l'évidement. Vous pouvez utiliser les softkeys pour reprendre directement l'outil de préévidement inscrit dans le tableau d'outils. Vous pouvez en outre utiliser la softkey Nom d'outil pour indiquer le nom d'outil. La commande insère automatiquement le premier guillemet lorsque vous quittez le champ de saisie. S'il n'y a pas eu de pré-évidement, programmer "0" ; si vous programmez ici un numéro ou un nom, la commande n'évidera que la partie qui n'a pas pu être évidée avec l'outil de pré-évidement. Si la zone à évider ne peut pas être abordée sur le côté, la commande effectue une plongée pendulaire. Pour cela, vous devez définir la longueur de coupe LCUTS et l'angle de plongée maximal ANGLE de l'outil dans le tableau d'outils TOOL.T. Plage de programmation : 0 à 99999 pour la saisie d'un numéro, 16 caractères max. pour un nom Q19 Avance pendulaire? : avance pendulaire en mm/min. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Exemple 59 CYCL DEF 22 EVIDEMENT Q10=+5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=750 ;AVANCE EVIDEMENT Q18=1 ;OUTIL PRE-EVIDEMENT Q19=150 ;AVANCE PENDULAIRE Q208=9999 ;AVANCE RETRAIT Q401=80 ;FACTEUR D'AVANCE Q404=0 ;STRAT. SEMI-FINITION Q208 Avance retrait? : vitesse de déplacement de l'outil lors de son dégagement après l'usinage, en mm/min. Si vous avez programmé Q208=0, la commande dégage l'outil avec l'avance Q12. Plage de programmation : 0 à 99999,9999, sinon FMAX, FAUTO HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 267 9 Cycles d'usinage : poche avec contour | EVIDEMENT (cycle 22, DIN/ISO : G122, option 19) Q401 Facteur d'avance en %? : facteur (pourcentage) de réduction de l'avance d'usinage (Q12) dès que l'outil plonge complètement dans la matière lors de l'évidement. Si vous utilisez la réduction d’avance, vous pouvez définir une avance d’évidement suffisamment élevée de manière à obtenir des conditions de coupe optimales pour le recouvrement de trajectoire Q2) défini dans le cycle 20. La commande réduit alors l'avance, comme vous l'avez défini, aux transitions ou aux endroits exigus de sorte que la durée d'usinage diminue de façon globale. Plage de programmation : 0,0001 à 100,0000 Q404 Stratégie semi-finition (0/1)? : vous définissez ici comment la commande doit déplacer l'outil lors de la semi-finition (évidement de finition), lorsque le rayon de l'outil de semi-finition est supérieur ou égal à la moitié du rayon de l'outil de pré-évidement. Q404=0: entre les zones qu'il faut finir d'évider, la commande déplace l’outil à la profondeur actuelle, le long du contour Q404=1: entre les zones qu'il faut finir d'évider, la commande retire l'outil à la distance d'approche, puis l'amène au point de départ de la zone d'évidement suivante. 268 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : poche avec contour | FINITION DE PROFONDEUR (cycle 23, DIN/ISO : G123, option 19) 9.7 FINITION DE PROFONDEUR (cycle 23, DIN/ISO : G123, option 19) Mode opératoire du cycle Le cycle 23 FINITION DE PROFONDEUR réalise la finition de la profondeur de surépaisseur programmée dans le cycle 20. La commande déplace l'outil en douceur (cercle tangentiel vertical) sur la face à usiner s'il y a suffisamment de place pour cela. Si l'espace est restreint, la commande déplace l'outil verticalement jusqu'à la profondeur. L'outil fraise ensuite ce qui reste après l'évidement, soit la valeur de la surépaisseur de finition. Avant d'appeler le cycle 23, vous devez d'abord programmer d'autres cycles : Cycle 14 CONTOUR ou SEL CONTOUR Cycle 20 DONNEES DE CONTOUR Au besoin, le cycle 21 PRE-PERÇAGE Au besoin, le cycle 22 EVIDEMENT Mode opératoire du cycle 1 La commande positionne l'outil à la hauteur de sécurité, en avance rapide FMAX. 2 Il s'ensuit alors un déplacement dans l'axe d'outil avec l'avance Q11. 3 La commande déplace l'outil en douceur (cercle tangentiel vertical) sur la face à usiner s'il y a suffisamment de place pour cela. Si l'espace est restreint, la commande déplace l'outil verticalement jusqu'à la profondeur 4 L'outil fraise ensuite la matière qui reste après l'évidement, soit la surépaisseur de finition. 5 L'outil retourne ensuite à la hauteur de sécurité dans l'axe d'outil ou à la dernière position programmée avant le cycle. Dépend des paramètres ConfigDatum, CfgGeoCycle (n °201000), posAfterContPocket (n°201007). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 269 9 9 Cycles d'usinage : poche avec contour | FINITION DE PROFONDEUR (cycle 23, DIN/ISO : G123, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous avez configuré le paramètre posAfterContPocket (n°201007) sur ToolAxClearanceHeight, à la fin du cycle, la commande positionne l'outil à la hauteur de sécurité, uniquement dans le sens de l'axe d'outil. La commande ne positionne pas l'outil dans le plan d'usinage. Positionner l’outil après la fin du cycle avec toutes les coordonnées du plan d’usinage, par exemple L X+80 Y+0 R0 FMAX Après le cycle, programmer une position absolue et non un déplacement incrémental Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. La commande détermine automatiquement le point de départ de la finition en profondeur. Le point de départ dépend de la répartition des contours dans la poche. Le rayon d'approche pour le prépositionnement à la profondeur finale est fixe et il est indépendant de l'angle de plongée de l'outil. Si la fonction M110 est active pendant l'usinage, l'avance sera réduite d'autant pour les arcs de cercle corrigés à l'intérieur. Paramètres du cycle Q11 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors de sa plongée, en mm/ min. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q12 Avance évidement? : avance lors des mouvements de déplacement dans le plan d'usinage. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q208 Avance retrait? : vitesse de déplacement de l'outil lors de son dégagement après l'usinage, en mm/min. Si vous avez programmé Q208=0, la commande dégage l'outil avec l'avance Q12. Plage de programmation : 0 à 99999,9999, sinon FMAX, FAUTO Exemple 60 CYCL DEF 23 FINITION EN PROF. Q11=100 ;AVANCE PLONGEE PROF. Q12=350 ;AVANCE EVIDEMENT Q208=9999 ;AVANCE RETRAIT 270 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | FINITION LATERALE (cycle 24, DIN/ISO : G124, option 19) 9.8 FINITION LATERALE (cycle 24, DIN/ISO : G124, option 19) Mode opératoire du cycle Le cycle 24 FINITION LATERALE réalise la finition de la surépaisseur programmée dans le cycle 20. Ce cycle peut être exécuté en avalant ou en opposition. Avant d'appeler le cycle 24, vous devez d'abord programmer d'autres cycles : Cycle 14 CONTOUR ou SEL CONTOUR Cycle 20 DONNEES DE CONTOUR Au besoin, le cycle 21 PRE-PERÇAGE Au besoin, le cycle 22 EVIDEMENT Déroulement du cycle 1 La commande positionne l'outil au point de départ de la position d'approche, au-dessus de la pièce. Cette position dans le plan résulte d'une trajectoire circulaire tangentielle selon laquelle la commande déplace l'outil lorsqu'elle approche le contour. 2 La commande amène ensuite l'outil à la première profondeur de passe, avec l'avance définie pour la passe en profondeur. 3 La commande accoste le contour de manière tangentielle et l'usine jusqu'à la fin. L'opération de finition s'effectue séparément pour chaque partie de contour. 4 La commande amène l'outil au niveau du contour de finition par un mouvement hélicoïdal tangentiel et le dégage selon le même mouvement. La hauteur de départ de l'hélice est de maximum 1/25 de la distance d'approche Q6, avec une dernière profondeur de passe restante au-dessus de la profondeur finale. 5 L'outil retourne ensuite à la hauteur de sécurité dans l'axe d'outil ou à la dernière position programmée avant le cycle. Dépend des paramètres ConfigDatum, CfgGeoCycle (n °201000), posAfterContPocket (n°201007). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 271 9 Cycles d'usinage : poche avec contour | FINITION LATERALE (cycle 24, DIN/ISO : G124, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous avez configuré le paramètre posAfterContPocket (n°201007) sur ToolAxClearanceHeight, à la fin du cycle, la commande positionne l'outil à la hauteur de sécurité, uniquement dans le sens de l'axe d'outil. La commande ne positionne pas l'outil dans le plan d'usinage. Positionner l’outil après la fin du cycle avec toutes les coordonnées du plan d’usinage, par exemple L X+80 Y+0 R0 FMAX Après le cycle, programmer une position absolue et non un déplacement incrémental 272 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | FINITION LATERALE (cycle 24, DIN/ISO : G124, option 19) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. La somme de la surépaisseur latérale de finition (Q14) et du rayon de l’outil de finition doit être inférieure à la somme de la surépaisseur latérale de finition (Q3, cycle 20) et du rayon de l’outil d’évidement. Si aucune surépaisseur n'a été définie dans le cycle 20, la commande émet un message d'erreur "Rayon d'outil trop grand". La surépaisseur latérale Q14 restante après l'opération de finition doit être inférieure à la surépaisseur du cycle 20. Si vous exécutez le cycle 24 sans avoir évidé précédemment avec le cycle 22, le calcul indiqué plus haut reste valable; le rayon de l’outil d’évidement est alors à la valeur „0“. Vous pouvez aussi utiliser le cycle 24 pour le fraisage de contours. Il vous faut alors : définir le contour à fraiser comme îlot distinct (sans limitation de poche) Programmer dans le cycle 20 la surépaisseur de finition (Q3) de manière à ce qu'elle soit supérieure à la somme de la surépaisseur de finition Q14 et du rayon de l'outil utilisé La commande détermine automatiquement le point de départ de la finition. Le point initial dépend de l'espace à l'intérieur de la poche et de la surépaisseur programmée dans le cycle 20. La commande calcule aussi le point de départ en fonction de l'ordre des opérations d'usinage. Lorsque vous sélectionnez le cycle de finition avec la touche GOTO et que vous lancez le programme CN, il se peut que le point de départ se trouve à un autre endroit que celui qu'il avait au moment de l'exécution du programme CN, dans l'ordre défini. Si la fonction M110 est active pendant l'usinage, l'avance sera réduite d'autant pour les arcs de cercle corrigés à l'intérieur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 273 9 Cycles d'usinage : poche avec contour | FINITION LATERALE (cycle 24, DIN/ISO : G124, option 19) Paramètres du cycle Q9 Sens rotation ? sens horaire= -1 : sens d'usinage : +1 : rotation dans le sens anti-horaire –1 : rotation dans le sens horaire Q10 Profondeur de passe? (en incrémental) : cote de chaque passe en plongée de l'outil. Plage de programmation : -99999,9999 à 99999,9999 Q11 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors de sa plongée, en mm/ min. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q12 Avance évidement? : avance lors des mouvements de déplacement dans le plan d'usinage. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ 61 CYCL DEF 24 FINITION LATERALE Q14 Surepaisseur finition laterale? (en incrémental) : la surépaisseur latérale Q14 reste après l'opération de finition. (Cette surépaisseur doit toutefois être inférieure à la surépaisseur dans le cycle 20.) Plage de programmation : -99999,9999 à 99999,9999 Q438 Numéro/Nom outil d'évidement? Q438 ou QS438 : numéro ou nom de l'outil avec lequel la commande a effectué l'évidement de la poche de contour. Vous avez la possibilité de reprendre directement, par softkey, l'outil de pré-évidement du tableau d'outils. Vous pouvez en outre utiliser la softkey Nom d'outil pour indiquer le nom d'outil. Lorsque vous quittez le champ de saisie, la commande insère automatiquement le premier guillemet. Plage de programmation pour les valeurs numériques : -1 à +32767,9 Q438=-1 : Le dernier outil utilisé est considéré comme l'outil d'évidement (comportement par défaut) Q438=0 : En l'absence de pré-évidement, entrer le numéro d'un outil de rayon 0. Il s'agit généralement de l'outil numéro 0. 274 Exemple Q9=+1 ;SENS DE ROTATION Q10=+5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=350 ;AVANCE EVIDEMENT Q14=+0 ;SUREPAIS. LATERALE Q438=-1 ;NUMÉRO/NOM OUTIL D'ÉVIDEMENT? HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | DONNEES DU TRACE DE CONTOUR (cycle 270, DIN/ISO : G270, option 19) 9.9 DONNEES DU TRACE DE CONTOUR (cycle 270, DIN/ISO : G270, option 19) Attention lors de la programmation ! Ce cycle vous permet de définir plusieurs propriétés du cycle 25 TRACE DE CONTOUR. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Le cycle 270 est actif avec DEF, ce qui signifie qu’il est actif dès lors qu’il est défini dans le programme CN. Ne définissez pas de correction de rayon si vous utilisez le cycle 270 dans le sous-programme de contour. Définir le cycle 270 avant le cycle 25. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 275 9 Cycles d'usinage : poche avec contour | DONNEES DU TRACE DE CONTOUR (cycle 270, DIN/ISO : G270, option 19) Paramètres du cycle Q390 Type of approach/departure? : définition du type d'approche et de sortie : Q390=1 : approche tangentielle du contour, en arc de cercle Q390=2 : approche tangentielle du contour, en ligne droite Q390=3 : approche verticale du contour Q391 Correct. rayon (0=R0/1=RL/2=RR)? : définition de la correction de rayon : Q391=0 : Usiner le contour défini sans correction de rayon Q391=1 : Usiner le contour défini avec correction à gauche Q391=2 : Usiner le contour défini avec correction à droite Q392 Rayon d'appr./Rayon de sortie? : actif uniquement si vous avez sélectionné l'approche tangentielle sur un arc de cercle (Q390=1). Rayon du cercle d'entrée/de sortie. Plage de programmation : 0 à 99999,9999 Q393 Angle au centre? : actif uniquement si vous avez sélectionné l'approche tangentielle sur un arc de cercle (Q390=1). Angle d'ouverture du cercle d'entrée. Plage de programmation : 0 à 99999,9999 Q394 Distance du point auxiliaire? : actif uniquement si l'approche tangentielle sélectionnée se fait en ligne droite ou de manière perpendiculaire (Q390=2 ou Q390=3). Distance du point auxiliaire à partir duquel la commande doit aborder le contour. Plage de programmation : 0 à 99999,9999 276 Exemple 62 CYCL DEF 270 DONNEES TRACE CONT. Q390=1 ;MODE D'APPROCHE Q391=1 ;CORRECTION DE RAYON Q392=3 ;RAYON Q393=+45 ;ANGLE AU CENTRE Q394=+2 ;DISTANCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | TRACE DE CONTOUR (cycle 25, DIN/ISO : G125, option 19) 9.10 TRACE DE CONTOUR (cycle 25, DIN/ISO : G125, option 19) Mode opératoire du cycle En liaison avec le cycle 14 CONTOUR, ce cycle permet d'usiner des contours ouverts ou fermés. Le cycle 25 TRACE DE CONTOUR présente des avantages considérables par rapport à l'usinage d’un contour à l'aide de séquences de positionnement: La commande surveille l'usinage de manière à éviter les contredépouilles et les endommagements du contour (vérifier le contour à l'aide du graphique de test). Si le rayon d’outil est trop grand, il faudra éventuellement prévoir une reprise d'usinage au niveau des angles intérieurs. L’usinage est réalisé en continu, en avalant ou en opposition. Le type de fraisage est conservé même si les contours sont inversés en image miroir. En présence de plusieurs passes, la commande peut aussi déplacer l'outil d'avant en arrière pour réduire le temps d'usinage. Vous pouvez introduire des surépaisseurs pour exécuter l’ébauche et la finition en plusieurs passes HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 277 9 Cycles d'usinage : poche avec contour | TRACE DE CONTOUR (cycle 25, DIN/ISO : G125, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous avez configuré le paramètre posAfterContPocket (n°201007) sur ToolAxClearanceHeight, à la fin du cycle, la commande positionne l'outil à la hauteur de sécurité, uniquement dans le sens de l'axe d'outil. La commande ne positionne pas l'outil dans le plan d'usinage. Positionner l’outil après la fin du cycle avec toutes les coordonnées du plan d’usinage, par exemple L X+80 Y+0 R0 FMAX Après le cycle, programmer une position absolue et non un déplacement incrémental Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. La commande ne tient compte que du premier label du cycle 14 CONTOUR. Si vous utilisez des paramètres Q de type QL locaux dans un programme de contour, il vous faudra aussi les affecter ou les calculer dans le sous-programme de contour. La taille de la mémoire réservée à un cycle SL est limitée. Dans un cycle SL, vous pouvez programmer au maximum 16384 éléments de contour. Le cycle 20 DONNEES DU CONTOUR n'est pas nécessaire. Si la fonction M110 est active pendant l'usinage, l'avance sera réduite d'autant pour les arcs de cercle corrigés à l'intérieur. 278 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | TRACE DE CONTOUR (cycle 25, DIN/ISO : G125, option 19) Paramètres du cycle Q1 Profondeur de fraisage? (en incrémental) : distance entre la surface de la pièce et le fond du contour. Plage de programmation : -99999,9999 à 99999,9999 Q3 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q5 Coordonnées surface pièce? (en absolu) : coordonnée absolue de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q7 Hauteur de securite? (en absolu) : hauteur en valeur absolue à l'intérieur de laquelle aucune collision ne peut se produire avec la pièce (pour positionnement intermédiaire et retrait en fin de cycle) Plage de programmation : -99999,9999 à 99999,9999 Q10 Profondeur de passe? (en incrémental) : cote de chaque passe en plongée de l'outil. Plage de programmation : -99999,9999 à 99999,9999 Q11 Avance plongee en profondeur? : avance des mouvements de déplacement de l'axe de la broche. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Exemple 62 CYCL DEF 25 TRACE DE CONTOUR Q1=-20 ;PROFONDEUR FRAISAGE Q3=+0 ;SUREPAIS. LATERALE Q5=+0 ;COORD. SURFACE PIECE Q7=+50 ;HAUTEUR DE SECURITE Q10=+5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=350 ;AVANCE EVIDEMENT Q15=-1 ;MODE FRAISAGE Q18=0 ;OUTIL PRE-EVIDEMENT Q446=+0,01;MATERIAU RESTANT Q447=+10 ;ECART DE CONNEXION Q448=+2 ;EXTENS. TRAJECTOIRE Q12 Avance évidement? : avance lors des mouvements de déplacement dans le plan d'usinage. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q15 Mode fraisage? en opposition =-1 : fraisage en avalant : valeur = +1 fraisage en opposition : valeur = –1 fraisage en avalant et en opposition, par alternance, en plusieurs passes : valeur = 0 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 279 9 Cycles d'usinage : poche avec contour | TRACE DE CONTOUR (cycle 25, DIN/ISO : G125, option 19) Q18 Outil de pré-évidement? ou QS18 : numéro ou nom de l'outil avec lequel la commande a déjà effectué l'évidement. Vous pouvez utiliser les softkeys pour reprendre directement l'outil de préévidement inscrit dans le tableau d'outils. Vous pouvez en outre utiliser la softkey Nom d'outil pour indiquer le nom d'outil. La commande insère automatiquement le premier guillemet lorsque vous quittez le champ de saisie. S'il n'y a pas eu de pré-évidement, programmer "0" ; si vous programmez ici un numéro ou un nom, la commande n'évidera que la partie qui n'a pas pu être évidée avec l'outil de pré-évidement. Si la zone à évider ne peut pas être abordée sur le côté, la commande effectue une plongée pendulaire. Pour cela, vous devez définir la longueur de coupe LCUTS et l'angle de plongée maximal ANGLE de l'outil dans le tableau d'outils TOOL.T. Plage de programmation : 0 à 99999 pour la saisie d'un numéro, 16 caractères max. pour un nom Q446 Matériau restant accepté ? Indiquez jusqu'à quelle valeur, en mm, vous acceptez de la matière résiduelle sur votre contour. Si vous indiquez 0,01 mm par exemple, la commande ne tentera plus d'enlever la matière résiduelle à partir d'une épaisseur de 0,01 mm. Plage de saisie 0,001 à 9,999 Q447 Ecart de connexion maximal ? Distance maximale entre deux zones à évider. Dans les limites de cette distance, la commande amène l’outil à la profondeur d’usinage le long du contour, sans le relever. Plage de programmation : 0 à 999,9999 Q448 Extension de trajectoire ? Valeur de prolongement de la trajectoire de l'outil en début et en fin de contour. La commande rallonge toujours la trajectoire de l'outil parallèlement au contour. Plage de programmation 0 à 99,999 280 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | RAINURE DE CONTOUR TROCHOÏDALE (cycle 275, DIN/ISO : G275, option 19) 9.11 RAINURE DE CONTOUR TROCHOÏDALE (cycle 275, DIN/ISO : G275, option 19) Mode opératoire du cycle En liaison avec le cycle 14 CONTOUR, ce cycle permet d'usiner entièrement des contours ouverts et fermés avec le procédé de fraisage en tourbillon. Le fraisage en tourbillon permet des passes très profondes avec des vitesses de coupe élevées. Les conditions de coupe étant constantes, il n'y a pas d'accroissement de l’usure de l’outil. En utilisant des plaquettes, toute la hauteur d'arête est utilisée permettant ainsi d’accroitre le volume de copeau par dent. De plus, le fraisage en tourbillon sollicite moins la mécanique de la machine. En fonction des paramètres du cycle, vous disposez des alternatives d'usinage suivantes : Usinage intégral : ébauche, finition en profondeur, finition latérale Seulement ébauche Seulement finition latérale Ebauche avec rainure fermée La description du contour d'une rainure fermée doit toujours commencer par une séquence linéaire (séquence L). 1 L'outilsepositionne,selonlalogiquedepositionnementdéfinie, au point de départ du contour et plonge en pendulaire à la première passe avec l'angle de plongée défini dans le tableau d'outils. La stratégie de plongée est à définir au paramètre Q366. 2 La commande évide la rainure par des mouvements circulaires, jusqu'au point final du contour. Au cours du mouvement circulaire, la commande décale l'outil d'une valeur de passe (Q436), que vous pouvez personnaliser, dans le sens d'usinage. Le mouvement circulaire en avalant/opposition est à définir au paramètre Q351. 3 Au point final du contour, la commande amène l'outil à une hauteur de sécurité, avant de le ramener au point de départ de la description du contour. 4 Ce processus est répété jusqu'à ce que la profondeur programmée pour la rainure soit atteinte. Ebauche avec rainure fermée 5 Si une surépaisseur de finition est définie, la commande procède à la finition des parois de la rainure, éventuellement en plusieurs passes (si programmé ainsi). La paroi de la rainure est alors accostée tangentiellement à partir du point de départ, en tenant compte du mode de fraisage, en avalant/opposition. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Schéma : travail avec les cycles SL 0 BEGIN PGM CYC275 MM ... 12 CYCL DEF 14.0 CONTOUR 13 CYCL DEF 14.1 LABEL CONTOUR 10 14 CYCL DEF 275 RAINURE TROCHOÏDALE ... 15 CYCL CALL M3 ... 50 L Z+250 R0 FMAX M2 51 LBL 10 ... 55 LBL 0 ... 99 END PGM CYC275 MM 281 9 Cycles d'usinage : poche avec contour | RAINURE DE CONTOUR TROCHOÏDALE (cycle 275, DIN/ISO : G275, option 19) Ebauche avec rainure ouverte La description de contour d'une rainure ouverte doit toujours commencer avec une séquence d'approche (séquence appr). 1 L'outil se positionne, selon la logique de positionnement, au point de départ de l'usinage qui a été défini aux paramètres de la séquence APPR, perpendiculairement à la première passe en profondeur. 2 La commande évide la rainure par des mouvements circulaires, jusqu'au point final du contour. Au cours du mouvement circulaire, la commande décale l'outil d'une valeur de passe (Q436), que vous pouvez personnaliser, dans le sens d'usinage. Le mouvement circulaire en avalant/opposition est à définir au paramètre Q351. 3 Au point final du contour, la commande amène l'outil à une hauteur de sécurité, avant de le ramener au point de départ de la description du contour. 4 Ce processus est répété jusqu'à ce que la profondeur programmée pour la rainure soit atteinte. Finition avec rainure ouverte 5 Si une surépaisseur de finition est définie, la commande procède à la finition des parois de la rainure, éventuellement en plusieurs passes (si programmé ainsi). La paroi de la rainure est accostée tangentiellement par la TNC, à partir du point de départ déterminé dans la séquence APPR. La commande tient alors compte du mode de fraisage, en avalant ou en opposition. 282 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | RAINURE DE CONTOUR TROCHOÏDALE (cycle 275, DIN/ISO : G275, option 19) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous avez configuré le paramètre posAfterContPocket (n°201007) sur ToolAxClearanceHeight, à la fin du cycle, la commande positionne l'outil à la hauteur de sécurité, uniquement dans le sens de l'axe d'outil. La commande ne positionne pas l'outil dans le plan d'usinage. Positionner l’outil après la fin du cycle avec toutes les coordonnées du plan d’usinage, par exemple L X+80 Y+0 R0 FMAX Après le cycle, programmer une position absolue et non un déplacement incrémental Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Lors de l'utilisation du cycle 275 RAINURE TROCHOÏDALE, vous ne pouvez définir dans le cycle 14 CONTOUR qu'un seul sous-programme de contour. Dans le sous-programme de contour, vous définissez la ligne médiane de la rainure avec toutes les fonctions de contournage disponibles. La taille de la mémoire réservée à un cycle SL est limitée. Dans un cycle SL, vous pouvez programmer au maximum 16384 éléments de contour. La commande n'a pas besoin du cycle 20 DONNEES DU CONTOUR avec le cycle 275. Le point de départ ne doit pas se trouver dans un coin du contour si la rainure est fermée. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 283 9 Cycles d'usinage : poche avec contour | RAINURE DE CONTOUR TROCHOÏDALE (cycle 275, DIN/ISO : G275, option 19) Paramètres du cycle Q215 Opérations d'usinage (0/1/2)? : définir les opérations d'usinage : 0 : ébauche et finition 1 : ébauche uniquement 2 : finition uniquement La finition latérale et la finition en profondeur ne sont exécutées que si la surépaisseur de finition correspondante (Q368, Q369) est définie. Q219 Largeur de la rainure? (valeur parallèle à l'axe auxiliaire du plan d'usinage) : entrer la largeur de la rainure ; si la largeur de la rainure est égale au diamètre de l'outil, la commande se contente de réaliser l'ébauche (fraisage d'un trou oblong). La largeur maximale de la rainure lors de l'ébauche équivaut à deux fois le diamètre de l'outil. Plage de programmation : 0 à 99999,9999 Q368 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : 0 à 99999,9999 Q436 Passe par rotation? (en absolu ) : valeur de décalage de l'outil par rotation, dans le sens d'usinage, par la commande Plage de programmation : 0 à 99999.9999 Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage. Le sens de rotation de la broche est pris en compte : +1 = fraisage en avalant –1 = fraisage en opposition PREDEF : la CN utilise la valeur de la séquence GLOBAL DEF. (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond de la rainure Plage de programmation : -99999,9999 à 99999,9999 284 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | RAINURE DE CONTOUR TROCHOÏDALE (cycle 275, DIN/ISO : G275, option 19) Q202 Profondeur de passe? (en incrémental) : distance parcourue par l'outil en une passe ; la valeur doit être supérieure à 0. Plage de programmation : 0 à 99999,9999 Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lorsqu'il approche de la profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ Q338 Passe de finition? (en incrémental) : cote de la passe de finition de l'outil sur l'axe de la broche. Q338=0: finition en une seule passe. Plage de programmation : 0 à 99999,9999 Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la finition latérale et en profondeur, en mm/min. Plage de programmation : 0 à 99999,999, sinon FAUTO, FU, FZ Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce Plage de saisie 0 à 99999,9999, sinon PREDEF Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de programmation : 0 à 99999,9999 Q366 Stratégie de plongée (0/1/2)? : type de stratégie de plongée : 0 = plongée verticale. La commande plonge à la verticale, indépendamment de l'angle de plongée ANGLE défini dans le tableau d'outils 1 = sans fonction 2 = plongée pendulaire. Dans le tableau d'outils, l'angle de plongée ANGLE de l'outil actif doit être différent de 0. Sinon, la commande émet un message d'erreur Sinon PREDEF HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 8 CYCL DEF 275 RAINURE TROCHOIDALE Q215=0 ;OPERATIONS D'USINAGE Q219=12 ;LARGEUR RAINURE Q368=0.2 ;SUREPAIS. LATERALE Q436=2 ;PASSE PAR ROTATION Q207=500 ;AVANCE FRAISAGE Q351=+1 ;MODE FRAISAGE Q201=-20 ;PROFONDEUR Q202=5 ;PROFONDEUR DE PASSE Q206=150 ;AVANCE PLONGEE PROF. Q338=5 ;PASSE DE FINITION Q385=500 ;AVANCE DE FINITION Q200=2 ;DISTANCE D'APPROCHE Q203=+0 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q366=2 ;PLONGEE Q369=0 ;SUREP. DE PROFONDEUR Q439=0 ;REFERENCE AVANCE 9 CYCL CALL FMAX M3 285 9 Cycles d'usinage : poche avec contour | RAINURE DE CONTOUR TROCHOÏDALE (cycle 275, DIN/ISO : G275, option 19) Q369 Surep. finition en profondeur? (en incrémental) : surépaisseur de finition pour la profondeur. Plage de programmation : 0 à 99999,9999 Q439 Référence de l'avance (0-3) ? : vous définissez ici à quoi se réfère l'avance programmée : 0 : l'avance se réfère à la trajectoire du centre de l'outil 1 : l'avance se réfère uniquement au tranchant de l'outil lors de la finition latérale, sinon à la trajectoire du centre de l'outil 2 : l'avance se réfère à la finition latérale et à la finition en profondeur de la trajectoire du centre de l'outil 3 : l'avance se réfère toujours au tranchant de l'outil 286 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | TRACE DE CONTOUR 3D (cycle 276, DIN/ISO : G276, option 19) 9.12 TRACE DE CONTOUR 3D (cycle 276, DIN/ISO : G276, option 19) Déroulement du cycle En combinaison avec le cycle 14 CONTOUR et le cycle 270 DONNEES TRACE CONT., ce cycle permet d’usiner des contours ouverts et fermés. Vous pouvez aussi travailler avec une détection automatique de matière résiduelle. De cette manière, vous pouvez p. ex. effectuer ultérieurement la finition des coins intérieurs avec un outil plus petit. Comparé au cycle 25 TRACE DE CONTOUR, le cycle 276 TRACE DE CONTOUR 3D traite en plus les coordonnés de l'axe d’outil qui sont définies dans le programme de contour. Cela permet à ce cycle d'usiner des contours 3D. Il est conseillé de programmer le cycle 270 DONNEES TRACE CONT. avant le cycle 276 TRACE DE CONTOUR 3D Usinage d'un contour sans prise de passe : profondeur de fraisage Q1=0 1 L’outil se rend au point de départ de l’usinage. Ce point de départ est obtenu à partir du premier point de contour, du type de fraisage et des paramètres du cycle 270 DONNEES TRACE CONT. préalablement défini, comme par exemple le Type d'approche. La commande amène alors l'outil à la première profondeur de passe. 2 L'outil approche le contour conformément à ce qui a été défini au préalable dans le cycle 270 DONNEES TRACE CONT. et usine le contour jusqu'à la fin. 3 En fin de contour, l’outil est dégagé conformément à ce qui a été défini dans le cycle 270 DONNEES TRACE CONT.. 4 Pour terminer, la commande vient positionner l'outil à la hauteur de sécurité. Usinage d’un contour avec passe : profondeur de fraisageQ1 différente de 0 avec profondeur de passe Q10 1 L’outil se rend au point de départ de l’usinage. Ce point de départ est obtenu à partir du premier point de contour, du type de fraisage et des paramètres du cycle 270 DONNEES TRACE CONT. préalablement défini, comme par exemple le Type d'approche. La commande amène alors l'outil à la première profondeur de passe. 2 L'outil approche le contour conformément à ce qui a été défini au préalable dans le cycle 270 DONNEES TRACE CONT. et usine le contour jusqu'à la fin. 3 Si vous avez sélectionné un usinage en avalant et en opposition (Q15=0), la commande exécute un mouvement pendulaire. Le mouvement de passe se fait alors au point de départ et au point final du contour. Si Q15 a une valeur différente de 0, la commande ramène l'outil à une hauteur de sécurité, au niveau du point de départ de l'usinage, avant de l'amener à la profondeur de passe suivante. 4 L’outil est dégagé conformément à ce qui a été défini dans le cycle 270 DONNEES TRACE CONT.. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 287 9 Cycles d'usinage : poche avec contour | TRACE DE CONTOUR 3D (cycle 276, DIN/ISO : G276, option 19) 5 Cette procédure se répète jusqu'à ce que la profondeur programmée soit atteinte. 6 Pour terminer, la commande vient positionner l'outil à la hauteur de sécurité. Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous avez configuré le paramètre posAfterContPocket (n°201007) sur ToolAxClearanceHeight, à la fin du cycle, la commande positionne l'outil à la hauteur de sécurité, uniquement dans le sens de l'axe d'outil. La commande ne positionne pas l'outil dans le plan d'usinage. Positionner l’outil après la fin du cycle avec toutes les coordonnées du plan d’usinage, par exemple L X+80 Y+0 R0 FMAX Après le cycle, programmer une position absolue et non un déplacement incrémental REMARQUE Attention, risque de collision ! Une collision peut survenir si vous positionnez l’outil derrière un obstacle, avant d’appeler un cycle. Avant d'appeler le cycle, positionner l'outil de manière à ce que la commande ne puisse pas approcher le point de départ du contour sans collision Si l'outil se trouve à une position inférieure à la hauteur de sécurité lors de l'appel d'outil, la commande émet un message d'erreur. 288 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | TRACE DE CONTOUR 3D (cycle 276, DIN/ISO : G276, option 19) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. La première séquence CN du sous-programme de contour doit comporter des valeurs pour les trois axes (X, Y et Z). Si vous utilisez les séquences APPR et DEP pour aborder et quitter un contour, la commande s'assure que les déplacement d’approche et de dégagement n’endommageront pas le contour. Le signe du paramètre Profondeur détermine le sens de l’usinage. Si vous programmez la profondeur à 0, la commande applique les coordonnées de l’axe d’outil qui sont indiquées dans le sous-programme de contour. Si vous utilisez le cycle 25 TRACE DE CONTOUR, vous ne pouvez définir qu’un sous-programme dans le cycle CONTOUR. Il est conseillé d’utiliser le cycle 270 DONNEES TRACE CONT. en combinaison avec le cycle 276. En revanche, il n'est pas nécessaire d’utiliser le cycle 20 DONNEES DU CONTOUR. Si vous utilisez des paramètres Q de type QL locaux dans un programme de contour, il vous faudra aussi les affecter ou les calculer dans le sous-programme de contour. La taille de la mémoire réservée à un cycle SL est limitée. Dans un cycle SL, vous pouvez programmer au maximum 16384 éléments de contour. Si la fonction M110 est active pendant l'usinage, l'avance sera réduite d'autant pour les arcs de cercle corrigés à l'intérieur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 289 9 Cycles d'usinage : poche avec contour | TRACE DE CONTOUR 3D (cycle 276, DIN/ISO : G276, option 19) Paramètres du cycle Q1 Profondeur de fraisage? (en incrémental) : distance entre la surface de la pièce et le fond du contour. Plage de programmation : -99999,9999 à 99999,9999 Q3 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q7 Hauteur de securite? (en absolu) : hauteur en valeur absolue à l'intérieur de laquelle aucune collision ne peut se produire avec la pièce (pour positionnement intermédiaire et retrait en fin de cycle) Plage de programmation : -99999,9999 à 99999,9999 Q10 Profondeur de passe? (en incrémental) : cote de chaque passe en plongée de l'outil. Plage de programmation : -99999,9999 à 99999,9999 Q11 Avance plongee en profondeur? : avance des mouvements de déplacement de l'axe de la broche. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Exemple 62 CYCL DEF 276 TRACE DE CONTOUR 3D Q1=-20 ;PROFONDEUR FRAISAGE Q3=+0 ;SUREPAIS. LATERALE Q7=+50 ;HAUTEUR DE SECURITE Q10=-5 ;PROFONDEUR DE PASSE Q11=150 ;AVANCE PLONGEE PROF. Q12=500 ;AVANCE EVIDEMENT Q15=+1 ;MODE FRAISAGE Q18=0 ;OUTIL PRE-EVIDEMENT Q446=+0,01;MATERIAU RESTANT Q447=+10 ;ECART DE CONNEXION Q448=+2 ;EXTENS. TRAJECTOIRE Q12 Avance évidement? : avance lors des mouvements de déplacement dans le plan d'usinage. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q15 Mode fraisage? en opposition =-1 : fraisage en avalant : valeur = +1 fraisage en opposition : valeur = –1 fraisage en avalant et en opposition, par alternance, en plusieurs passes : valeur = 0 Q18 Outil de pré-évidement? ou QS18 : numéro ou nom de l'outil avec lequel la commande a déjà effectué l'évidement. Vous pouvez utiliser les softkeys pour reprendre directement l'outil de préévidement inscrit dans le tableau d'outils. Vous pouvez en outre utiliser la softkey Nom d'outil pour indiquer le nom d'outil. La commande insère automatiquement le premier guillemet lorsque vous quittez le champ de saisie. S'il n'y a pas eu de pré-évidement, programmer "0" ; si vous programmez ici un numéro ou un nom, la commande n'évidera que la partie qui n'a pas pu être évidée avec l'outil de pré-évidement. Si la zone à évider ne peut pas être abordée sur le côté, la commande effectue une plongée pendulaire. Pour cela, vous devez définir la longueur de coupe LCUTS et l'angle de plongée maximal ANGLE de l'outil dans le tableau d'outils TOOL.T. Plage de programmation : 0 à 99999 pour la saisie d'un numéro, 16 caractères max. pour un nom 290 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | TRACE DE CONTOUR 3D (cycle 276, DIN/ISO : G276, option 19) Q446 Matériau restant accepté ? Indiquez jusqu'à quelle valeur, en mm, vous acceptez de la matière résiduelle sur votre contour. Si vous indiquez 0,01 mm par exemple, la commande ne tentera plus d'enlever la matière résiduelle à partir d'une épaisseur de 0,01 mm. Plage de saisie 0,001 à 9,999 Q447 Ecart de connexion maximal ? Distance maximale entre deux zones à évider. Dans les limites de cette distance, la commande amène l’outil à la profondeur d’usinage le long du contour, sans le relever. Plage de programmation : 0 à 999,9999 Q448 Extension de trajectoire ? Valeur de prolongement de la trajectoire de l'outil en début et en fin de contour. La commande rallonge toujours la trajectoire de l'outil parallèlement au contour. Plage de programmation 0 à 99,999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 291 9 Cycles d'usinage : poche avec contour | Exemples de programmation 9.13 Exemples de programmation Exemple: Evidement et semi-finition d'une poche 0 BEGIN PGM C20 MM 1 BLK FORM 0.1 Z X-10 Y-10 Z-40 2 BLK FORM 0.2 X+100 Y+100 Z+0 Définition de la pièce brute 3 TOOL CALL 1 Z S2500 Appel de l’outil pour le pré-évidement, diamètre 30 4 L Z+250 R0 FMAX Dégager l'outil 5 CYCL DEF 14.0 CONTOUR Définition du sous-programme de contour 6 CYCL DEF 14.1 LABEL CONTOUR 1 7 CYCL DEF 20 DONNEES DU CONTOUR Q1=-20 ;PROFONDEUR FRAISAGE Q2=1 ;FACTEUR RECOUVREMENT Q3=+0 ;SUREPAIS. LATERALE Q4=+0 ;SUREP. DE PROFONDEUR Q5=+0 ;COORD. SURFACE PIECE Q6=2 ;DISTANCE D'APPROCHE Q7=+100 ;HAUTEUR DE SECURITE Q8=0.1 ;RAYON D'ARRONDI Q9=-1 ;SENS DE ROTATION 8 CYCL DEF 22 EVIDEMENT Q10=5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=350 ;AVANCE EVIDEMENT Q18=0 ;OUTIL PRE-EVIDEMENT Q19=150 ;AVANCE PENDULAIRE Q208=30000 ;AVANCE RETRAIT Définition des paramètres d'usinage généraux Définition du cycle de pré-évidement 9 CYCL CALL M3 Appel du cycle de pré-évidement 10 L Z+250 R0 FMAX M6 Dégagement de l'outil 292 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | Exemples de programmation 11 TOOL CALL 2 Z S3000 Appel de l'outil de semi-finition, diamètre 15 12 CYCL DEF 22 EVIDEMENT Définition du cycle de semi-finition Q10=5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=350 ;AVANCE EVIDEMENT Q18=1 ;OUTIL PRE-EVIDEMENT Q19=150 ;AVANCE PENDULAIRE Q208=30000 ;AVANCE RETRAIT 13 CYCL CALL M3 Appel du cycle de semi-finition 14 L Z+250 R0 FMAX M2 Dégagement de l'outil, fin du programme 15 LBL 1 Sous-programme du contour 16 L X+0 Y+30 RR 17 FC DR- R30 CCX+30 CCY+30 18 FL AN+60 PDX+30 PDY+30 D10 19 FSELECT 3 20 FPOL X+30 Y+30 21 FC DR- R20 CCPR+55 CCPA+60 22 FSELECT 2 23 FL AN-120 PDX+30 PDY+30 D10 24 FSELECT 3 25 FC X+0 DR- R30 CCX+30 CCY+30 26 FSELECT 2 27 LBL 0 28 END PGM C20 MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 293 9 Cycles d'usinage : poche avec contour | Exemples de programmation Exemple : Pré-perçage, ébauche et finition de contours superposés 0 BEGIN PGM C21 MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-40 Définition de la pièce brute 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S2500 Appel de l'outil de perçage, diamètre 12 4 L Z+250 R0 FMAX Dégager l'outil 5 CYCL DEF 14.0 CONTOUR Définition des sous-programmes de contour 6 CYCL DEF 14.1 LABEL CONTOUR 1/2/3/4 7 CYCL DEF 20 DONNEES DU CONTOUR Q1=-20 ;PROFONDEUR FRAISAGE Q2=1 ;FACTEUR RECOUVREMENT Q3=+0.5 ;SUREPAIS. LATERALE Q4=+0.5 ;SUREP. DE PROFONDEUR Q5=+0 ;COORD. SURFACE PIECE Q6=2 ;DISTANCE D'APPROCHE Q7=+100 ;HAUTEUR DE SECURITE Q8=0.1 ;RAYON D'ARRONDI Q9=-1 ;SENS DE ROTATION 8 CYCL DEF 21 PRE-PERCAGE Q10=5 ;PROFONDEUR DE PASSE Q11=250 ;AVANCE PLONGEE PROF. Q13=2 ;OUTIL D'EVIDEMENT Définition des paramètres d'usinage généraux Définition du cycle de pré-perçage 9 CYCL CALL M3 Appel du cycle de pré-perçage 10 L +250 R0 FMAX M6 Dégagement de l'outil 11 TOOL CALL 2 Z S3000 Appel de l’outil d’ébauche/de finition, diamètre 12 12 CYCL DEF 22 EVIDEMENT Définition du cycle d'évidement Q10=5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. 294 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | Exemples de programmation Q12=350 ;AVANCE EVIDEMENT Q18=0 ;OUTIL PRE-EVIDEMENT Q19=150 ;AVANCE PENDULAIRE Q208=30000 ;AVANCE RETRAIT 13 CYCL CALL M3 Appel du cycle d'évidement 14 CYCL DEF 23 FINITION EN PROF. Définition du cycle de finition en profondeur Q11=100 ;AVANCE PLONGEE PROF. Q12=200 ;AVANCE EVIDEMENT Q208=30000 ;AVANCE RETRAIT 15 CYCL CALL Appel du cycle de finition en profondeur 16 CYCL DEF 24 FINITION LATERALE Définition du cycle de finition latérale Q9=+1 ;SENS DE ROTATION Q10=5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=400 ;AVANCE EVIDEMENT Q14=+0 ;SUREPAIS. LATERALE 17 CYCL CALL Appel du cycle de finition latérale 18 L Z+250 R0 FMAX M2 Dégager l'outil, fin de programme 19 LBL 1 Sous-programme de contour 1 : poche gauche 20 CC X+35 Y+50 21 L X+10 Y+50 RR 22 C X+10 DR23 LBL 0 24 LBL 2 Sous-programme de contour 2 : poche droite 25 CC X+65 Y+50 26 L X+90 Y+50 RR 27 C X+90 DR28 LBL 0 29 LBL 3 Sous-programme de contour 3 : îlot carré gauche 30 L X+27 Y+50 RL 31 L Y+58 32 L X+43 33 L Y+42 34 L X+27 35 LBL 0 36 LBL 4 Sous-programme de contour 4 : îlot triangulaire droite 37 L X+65 Y+42 RL 38 L X+57 39 L X+65 Y+58 40 L X+73 Y+42 41 LBL 0 42 END PGM C21 MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 295 9 Cycles d'usinage : poche avec contour | Exemples de programmation Exemple: Tracé de contour 0 BEGIN PGM C25 MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-40 Définition de la pièce brute 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S2000 Appel de l’outil, diamètre 20 4 L Z+250 R0 FMAX Dégager l'outil 5 CYCL DEF 14.0 CONTOUR Définition du sous-programme de contour 6 CYCL DEF 14.1 LABEL CONTOUR 1 7 CYCL DEF 25 TRACE DE CONTOUR Q1=-20 ;PROFONDEUR FRAISAGE Q3=+0 ;SUREPAIS. LATERALE Q5=+0 ;COORD. SURFACE PIECE Q7=+250 ;HAUTEUR DE SECURITE Q10=5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=200 ;AVANCE EVIDEMENT Q15=+1 ;MODE FRAISAGE Q466= 0.01 ;MATERIAU RESTANT Q447=+10 ;ECART DE CONNEXION Q448=+2 ;EXTENS. TRAJECTOIRE Définition des paramètres d'usinage 8 CYCL CALL M3 Appel du cycle 9 L Z+250 R0 FMAX M2 Dégager l'outil, fin de programme 10 LBL 1 Sous-programme du contour 11 L X+0 Y+15 RL 12 L X+5 Y+20 13 CT X+5 Y+75 14 L Y+95 15 RND R7.5 16 L X+50 17 RND R7.5 296 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 9 Cycles d'usinage : poche avec contour | Exemples de programmation 18 L X+100 Y+80 19 LBL 0 20 END PGM C25 MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 297 10 Cycles d'usinage : fraisage de contour optimisé 10 Cycles d'usinage : fraisage de contour optimisé | Cycles OCM (option 167) 10.1 Cycles OCM (option 167) Principes de base OCM Généralités Avec les cycles OCM Optimized Contour Milling) et la formule de contour, vous pouvez composer des contours complexes constitués de contours partiels (poches ou îlots). Ceux-ci sont plus performants que les cycles 22 à 24. Les cycles OCM offrent les fonctions supplémentaires suivantes : Lors de l'ébauche, la CN maintient scrupuleusement l'angle d'attaque de l'outil tel qu'il a été programmé. Outre les poches, vous pouvez aussi usiner des îlots et des poches ouvertes. Il est possible de programmer jusqu'à 16 384 éléments de contour max. dans un cycle OCM. Les cycles OCM effectuent un grand nombre de calculs complexes en interne, ainsi que les usinages qui en résultent. Pour des raisons de sécurité, effectuer dans tous les cas un test graphique du programme avant de l'exécuter ! Vous pouvez ainsi contrôler de manière simple si l'opération d'usinage calculée par la commande se déroule correctement. Angle d'attaque de l'outil Lors de l'ébauche, la CN conserve scrupuleusement l'angle d'attaque de l'outil. L'angle d'attaque de l'outil est indirectement défini via le recouvrement de trajectoire. Le recouvrement de trajectoire peut au maximum avoir pour valeur 1. Ceci correspond à un angle de maximum 90°. 300 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 10 Cycles d'usinage : fraisage de contour optimisé | Cycles OCM (option 167) Contour Le contour est défini avec CONTOUR DEF. Le premier contour peut être une poche ou une limite. Les contours qui suivent peuvent ensuite être programmés comme îlots ou poches. Les poches ouvertes doivent être programmées via une limite ou un îlot. Procédez comme suit : Programmez CONTOUR DEF Définissez le premier contour comme poche et le deuxième comme îlot Définissez le cycle DONNEES CONTOUR OCM Programmez la valeur 1 au paramètre de cycle Q569 La CN interprète le premier contour non pas comme poche mais comme limite ouverte. A partir de la limite ouverte, et de l'îlot qui est ensuite programmé, il en résulte une poche ouverte. Vous en trouverez un exemple à la suite des cycles OCM, voir "Exemple : Poche ouverte et reprise d'évidement avec des cycles OCM", Page 313 Les contours consécutifs qui se trouvent en dehors du premier contour ne sont pas pris en compte. Les poches fermées peuvent aussi être définies avec le cycle 14. Les données d'usinage telles que la profondeur de fraisage, les surépaisseurs et la distance d'approche sont à renseigner dans le cycle 271 DONNEES CONTOUR OCM Usinage Les cycles permettent d'usiner avec des outils de plus grande taille lors de l'ébauche et d'enlever la matière résiduelle avec des outils plus petits. Lors de la finition aussi, la matière préalablement évidée est prise en compte. Exemple Vous avez défini un outil d'évidement de Ø20 mm. Pour l'ébauche, il en résulte ainsi des rayons intérieurs de 10 mm minimum (le paramètre de cycle Q578 "Facteur des angles intérieures" n'est pas pris en compte ici). Vous voulez ensuite procéder à la finition de votre contour. Pour ce faire, vous définissez une fraise de finition de Ø10 mm. Dans ce cas, des rayons intérieurs de 5 mm minimum pourraient être possibles. Les cycles de finition aussi tiennent compte du pré-usinage en fonction de Q438, de manière à ce que les plus petits rayons intérieurs soient de 10 mm lors de la finition. La fraise de finition n'a aussi aucun risque de subir une surcharge. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 301 10 Cycles d'usinage : fraisage de contour optimisé | Cycles OCM (option 167) Schéma : exécution avec des cycles OCM 0 BEGIN PGM SL2 MM ... 12 CONTOUR DEF ... 13 CYCL DEF 271 DONNEES CONTOUR OCM ... ... 16 CYCL DEF 272 EBAUCHE OCM ... 17 CYCL CALL ... 18 CYCL DEF 273 PROF. FINITION OCM ... 19 CYCL CALL ... 22 CYCL DEF 274 FINITION LATER. OCM ... 23 CYCL CALL 50 L Z+250 R0 FMAX M2 51 LBL 1 ... 55 LBL 0 56 LBL 2 ... 60 LBL 0 ... 99 END PGM SL2 MM Vue d'ensemble Cycles OCM : Softkey 302 Cycle Page 271 DONNEES DE CONTOUR OCM 303 272 EBAUCHE OCM 305 273 PROFONDEUR DE FINIITION OCM 309 274 FINITION LATERALE OCM 311 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de contour optimisé | DONNEES DE CONTOUR OCM (cycle 271, DIN/ISO : G271, option 167) 10.2 DONNEES DE CONTOUR OCM (cycle 271, DIN/ISO : G271, option 167) Déroulement du cycle Dans le cycle 271 DONNEES CONTOUR OCM, vous programmez les données d'usinage qui sont destinées aux sous-programmes avec les contours partiels. Il est en outre possible de définir une limite ouverte pour votre poche dans le cycle 271. Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Les cycle 271 est actif avec DEF, ce qui signifie qu’il est actif dès lors qu’il est défini dans le programme CN. Les données d'usinage renseignées dans le cycle 271 sont valables pour les cycles 272 à 274. Paramètres du cycle Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond du contour. Plage de programmation : -99999,9999 à 0 Q368 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan d'usinage. Plage de programmation : 0 à 99999,9999 Q369 Surep. finition en profondeur? (en incrémental) : surépaisseur de finition pour la profondeur. Plage de programmation : 0 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q260 Q368 Q203 Q201 Q369 303 10 10 Cycles d'usinage : fraisage de contour optimisé | DONNEES DE CONTOUR OCM (cycle 271, DIN/ISO : G271, option 167) Q260 Hauteur de securite? (en absolu) : hauteur en valeur absolue à l'intérieur de laquelle aucune collision ne peut se produire avec la pièce (pour positionnement intermédiaire et retrait en fin de cycle) Plage de programmation : -99999,9999 à 99999,9999 Q578 Facteur Rayon Coins intérieurs ? Les rayons intérieurs obtenus sur le contour sont le résultat du rayon de l'outil additionné au produit du rayon de l'outil et de Q578. Plage de programmation : 0,05 à 0,99 Q569 La 1ère poche est une limite ? Définir une limite : 0 : Le premier contour est interprété comme poche dans CONTOUR DEF. 1 : Le premier contour est interprété comme limite ouverte dans CONTOUR DEF. Q569 = 0 Q569 = 1 Exemple 59 CYCL DEF 271 DONNEES CONTOUR OCM Q203=+0 ;COORD. SURFACE PIECE Q201=-20 ;PROFONDEUR Q368=+0 ;SUREPAIS. LATERALE Q369=+0 ;SUREP. DE PROFONDEUR Q260=+100 ;HAUTEUR DE SECURITE Q578=+0.2 ;FACTEUR COIN INTERIEUR Q569=+0 304 ;LIMITE OUVERTE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de contour optimisé | EBAUCHE OCM (cycle 272, DIN/ISO : G272, option 167) 10.3 EBAUCHE OCM (cycle 272, DIN/ISO : G272, option 167) Déroulement du cycle Vous définissez les données technologiques de l'ébauche dans le cycle 272 EBAUCHE OCM. Avant d'appeler le cycle 272, vous devez d'abord programmer d'autres cycles : CONTOUR DEF, sinon le cycle 14 CONTOUR 1 2 3 4 5 Cycle 271 DONNEES CONTOUR OCM L'outil se déplace jusqu'au point de départ conformément à la logique de positionnement définie. La CN détermine automatiquement le point de départ en se basant sur le pré-positionnement et le contour programmé. Avec Q569=0, l'outil plonge dans la matière en hélice pour atteindre la première profondeur de passe. La surépaisseur de finition latérale est prise en compte. Avec Q569=1, l'outil effectue une plongée verticale, en dehors de la limite ouverte. A la première profondeur de passe, l'outil fraise le contour avec l'avance de fraisage Q207, de l'extérieur vers l'intérieur ou inversement (selon Q569). A l'étape suivante, la CN amène l'outil à la profondeur de passe suivante et répète la procédure d'ébauche jusqu'à atteindre la profondeur programmée. L'outil retourne ensuite à la hauteur de sécurité, dans l'axe d'outil. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 305 10 10 Cycles d'usinage : fraisage de contour optimisé | EBAUCHE OCM (cycle 272, DIN/ISO : G272, option 167) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. CONTOUR DEF réinitialise le dernier rayon d'outil utilisé. Si vous exécutez ce cycle d'usinage avec Q438=-1 après un CONTOUR DEF, la CN en déduira qu'aucun préusinage n'a eu lieu. Le cas échéant, utiliser une fraise dotée d'une dent frontale en son milieu (DIN 844). Si la profondeur de passe est plus importante, comme LCUTS, celle-ci sera limitée et la CN émettra un avertissement. Vous définissez le comportement de plongée du cycle 272 dans le tableau d'outils, à l'aide des colonnes ANGLE et LCUTS. Si ANGLE est défini entre 0,1° et 89,999° dans le tableau d'outils, la CN fait effectuer à l'outil une plongée hélicoïdale avec la valeur ANGLE définie. Si la valeur d'ANGLE est inférieure à 0,1° ou supérieure ou égale à 90° dans le tableau d'outils, la CN émet un message d'erreur. Si les conditions géométriques ne permettent pas d'effectuer une plongée hélicoïdale (rainure), la CN vous informe que la plongée n'est pas possible à cet endroit. Une reprise d'usinage est alors possible, avec un plus petit outil. 306 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : fraisage de contour optimisé | EBAUCHE OCM (cycle 272, DIN/ISO : G272, option 167) Paramètres du cycle Q202 Profondeur de passe? (en incrémental) : la cote de chaque passe d'outil Plage de programmation : 0 à 99999,9999 Q370 Facteur de recouvrement? : Q370 x rayon d'outil permet d'obtenir la passe latérale k. Le recouvrement est considéré comme recouvrement maximal. Pour éviter qu'il ne reste de la matière dans les coins, il est possible de réduire le recouvrement. Plage de saisie 0,01 à 1, sinon PREDEF Q207 x Q568 Q200 Q202 Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Q568 Facteur d'avance de plongée ? Facteur de réduction de l'avance Q207 lors de la passe en profondeur dans la matière. Plage de programmation : 0,1 à 1 Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil lors de l'approche de la position de départ. Cette avance est utilisée sous la surface de coordonnées mais hors du matériau défini. En mm/min. Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO, PREDEF Q200 Distance d'approche? (en incrémental) : distance entre l'arête inférieure de l'outil et la surface de la pièce Plage de programmation : 0 à 99999,9999 Q438 Numéro/Nom outil d'évidement? Q438 ou QS438 : numéro ou nom de l'outil avec lequel la commande a effectué l'évidement de la poche de contour. Vous avez la possibilité de reprendre directement, par softkey, l'outil de pré-évidement du tableau d'outils. Vous pouvez en outre utiliser la softkey Nom d'outil pour indiquer le nom d'outil. Lorsque vous quittez le champ de saisie, la commande insère automatiquement le premier guillemet. Plage de programmation pour les valeurs numériques : -1 à +32767,9 Q438=-1 : Le dernier outil utilisé dans un cycle 272 est considéré comme l'outil d'évidement (comportement par défaut) Q438=0 : En l'absence de pré-évidement, entrer le numéro d'un outil de rayon 0. Il s'agit généralement de l'outil numéro 0. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 59 CYCL DEF 272 EBAUCHE OCM Q202=+5 ;PROFONDEUR DE PASSE Q370=+0.4 ;FACTEUR RECOUVREMENT Q207=+500 ;AVANCE FRAISAGE Q568=+0.6 ;FACTEUR DE PLONGEE Q253=+750 ;AVANCE PRE-POSIT. Q200=+2 ;DISTANCE D'APPROCHE Q438=-1 ;OUTIL EVIDEMENT Q577=+0.2 ;FACT. RAYON D'APPROCHE Q351=+1 ;MODE FRAISAGE 307 10 10 Cycles d'usinage : fraisage de contour optimisé | EBAUCHE OCM (cycle 272, DIN/ISO : G272, option 167) Q577 Facteur Rayon d'appr./sortie ? Facteur par lequel la valeur de mesure est multipliée. Q577 est multiplié avec un rayon d'outil. On obtient ainsi un rayon d'approche et de sortie. Plage de programmation : 0,15 à 0,99 Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage. Le sens de rotation de la broche est pris en compte : +1 = fraisage en avalant –1 = fraisage en opposition PREDEF : la CN utilise la valeur de la séquence GLOBAL DEF. (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) 308 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 10 Cycles d'usinage : fraisage de contour optimisé | FINITION EN PROFONDEUR OCM (cycle 273, DIN/ISO: G273, option 167) 10.4 FINITION EN PROFONDEUR OCM (cycle 273, DIN/ISO: G273, option 167) Déroulement du cycle Le cycle 273 PROF. FINITION OCM permet de réaliser la finition de la surépaisseur programmée en profondeur dans le cycle 271. Avant d'appeler le cycle 273, vous devez d'abord programmer d'autres cycles : CONTOUR DEF, sinon le cycle 14 CONTOUR Cycle 271 DONNEES CONTOUR OCM Au besoin, le cycle 272 EBAUCHE OCM 1 La CN positionne l'outil à la hauteur de sécurité, en avance rapide FMAX. 2 Il s'ensuit un mouvement le long de l'axe d'outil avec l'avance, Q385. 3 La commande déplace l'outil en douceur (cercle tangentiel vertical) sur la face à usiner s'il y a suffisamment de place pour cela. Si l'espace est restreint, la commande déplace l'outil verticalement jusqu'à la profondeur 4 L'outil fraise ensuite la matière qui reste après l'ébauche, autrement dit la surépaisseur de finition. 5 L'outil retourne ensuite à la hauteur de sécurité, dans l'axe d'outil. Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. La commande détermine automatiquement le point de départ de la finition en profondeur. Le point de départ dépend de la place disponible sur le contour. La CN exécute toujours la finition en avalant, avec le cycle 273. Vous devez définir un outil d'évidement dans le paramètre de cycle Q438, sinon la CN émet un message d'erreur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 309 10 Cycles d'usinage : fraisage de contour optimisé | FINITION EN PROFONDEUR OCM (cycle 273, DIN/ISO: G273, option 167) Paramètres du cycle Q370 Facteur de recouvrement? : Q370 x rayon d'outil permet d'obtenir la passe latérale k. Le recouvrement est considéré comme recouvrement maximal. Pour éviter qu'il ne reste de la matière dans les coins, il est possible de réduire le recouvrement. Plage de saisie 0,0001 à 1,9999, sinon PREDEF Q200 Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la finition en profondeur, en mm/min. Plage de programmation : 0 à 99999,999 sinon FAUTO, FU, FZ Q385 Q568 Facteur d'avance de plongée ? Facteur de réduction de l'avance Q385 lors de la passe en profondeur dans la matière. Plage de programmation : 0,1 à 1 Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil lors de l'approche de la position de départ. Cette avance est utilisée sous la surface de coordonnées mais hors du matériau défini. En mm/min. Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO, PREDEF Q200 Distance d'approche? (en incrémental) : distance entre l'arête inférieure de l'outil et la surface de la pièce Plage de programmation : 0 à 99999,9999 Q438 Numéro/Nom outil d'évidement? Q438 ou QS438 : numéro ou nom de l'outil avec lequel la commande a effectué l'évidement de la poche de contour. Vous avez la possibilité de reprendre directement, par softkey, l'outil de pré-évidement du tableau d'outils. Vous pouvez en outre utiliser la softkey Nom d'outil pour indiquer le nom d'outil. Lorsque vous quittez le champ de saisie, la commande insère automatiquement le premier guillemet. Plage de programmation pour les valeurs numériques : -1 à +32767,9 Q438=-1:. Le dernier outil utilisé est considéré comme l'outil d'évidement (comportement par défaut). 310 Q385 x Q568 Exemple 60 CYCL DEF 273 PROF. FINITION OCM Q370=+1 ;FACTEUR RECOUVREMENT Q385=+500 ;AVANCE DE FINITION Q568=+0.3 ;FACTEUR DE PLONGEE Q253=+750 ;AVANCE PRE-POSIT. Q200=+2 ;DISTANCE D'APPROCHE Q438=-1 ;OUTIL EVIDEMENT HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 10 Cycles d'usinage : fraisage de contour optimisé | FINITION LATERALE OCM (cycle 274, DIN/ISO : G274, option 167) 10.5 FINITION LATERALE OCM (cycle 274, DIN/ISO : G274, option 167) Déroulement du cycle Le cycle 274 FINITION LATER. OCM réalise la finition de la surépaisseur programmée dans le cycle 271. Ce cycle peut être exécuté aussi bien en avalant qu'en opposition. Avant d'appeler le cycle 274, vous devez d'abord programmer d'autres cycles : CONTOUR DEF, sinon le cycle 14 CONTOUR Cycle 271 DONNEES CONTOUR OCM Au besoin, le cycle 272 EBAUCHE OCM Cycle 273 PROF. FINITION OCM 1 La commande positionne l'outil au point de départ de la position d'approche, au-dessus de la pièce. Cette position dans le plan est obtenu à partir d'une trajectoire circulaire tangentielle sur laquelle la CN déplace l'outil. 2 La commande amène ensuite l'outil à la première profondeur de passe, avec l'avance définie pour la passe en profondeur. 3 La CN approche et quitte le contour selon un arc hélicoïdal tangentiel, jusqu'à la fin de la finition de l'ensemble du contour. L'opération de finition s'effectue séparément pour chaque partie de contour. 4 L'outil retourne ensuite à la hauteur de sécurité, dans l'axe d'outil. Vous pouvez aussi utiliser le cycle 274 pour le fraisage de contours. Procédez comme suit : Définir le contour à fraiser comme îlot individuel (sans limitation de poche) Programmer dans le cycle 271 la surépaisseur de finition (Q368) de manière à ce qu'elle soit supérieure à la somme de la surépaisseur de finition Q14 et du rayon de l'outil utilisé Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. La surépaisseur latérale Q14 reste après l'opération de finition. Cette surépaisseur doit toutefois être inférieure à la surépaisseur dans le cycle 271. La commande détermine automatiquement le point de départ de la finition. Le point de départ dépend de l'espace disponible sur le contour et de la surépaisseur programmée dans le cycle 271. Vous devez définir un outil d'évidement dans le paramètre de cycle Q438, sinon la CN émet un message d'erreur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 311 10 Cycles d'usinage : fraisage de contour optimisé | FINITION LATERALE OCM (cycle 274, DIN/ISO : G274, option 167) Paramètres du cycle Q338 Passe de finition? (en incrémental) : cote de la passe de finition de l'outil sur l'axe de la broche. Q338=0: finition en une seule passe. Plage de programmation : 0 à 99999,9999 Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la finition latérale, en mm/min. Plage de programmation : 0 à 99999,999 sinon FAUTO, FU, FZ Q200 Q338 Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil lors de l'approche de la position de départ. Cette avance est utilisée sous la surface de coordonnées mais hors du matériau défini. En mm/min. Plage de programmation : 0 à 99999,9999 ou FMAX, FAUTO, PREDEF Q200 Distance d'approche? (en incrémental) : distance entre l'arête inférieure de l'outil et la surface de la pièce Plage de programmation : 0 à 99999,9999 Q14 Surepaisseur finition laterale? (en incrémental) : la surépaisseur latérale Q14 reste après l'opération de finition. (Cette surépaisseur doit toutefois être inférieure à la surépaisseur dans le cycle 271.) Plage de programmation : -99999,9999 à 99999,9999 Q438 Numéro/Nom outil d'évidement? Q438 ou QS438 : numéro ou nom de l'outil avec lequel la commande a effectué l'évidement de la poche de contour. Vous avez la possibilité de reprendre directement, par softkey, l'outil de pré-évidement du tableau d'outils. Vous pouvez en outre utiliser la softkey Nom d'outil pour indiquer le nom d'outil. Lorsque vous quittez le champ de saisie, la commande insère automatiquement le premier guillemet. Plage de programmation pour les valeurs numériques : -1 à +32767,9 Q438=-1:. Le dernier outil utilisé est considéré comme l'outil d'évidement (comportement par défaut). Q351 Sens? en aval.=+1, en oppos.=-1 : type de fraisage. Le sens de rotation de la broche est pris en compte : +1 = fraisage en avalant –1 = fraisage en opposition PREDEF : la CN utilise la valeur de la séquence GLOBAL DEF. (Si vous indiquez la valeur 0, l'usinage se fera en avalant.) 312 Q14 Q385 Exemple 61 CYCL DEF 274 FINITION LATER. OCM Q338=+0 ;PASSE DE FINITION Q385=+500 ;AVANCE DE FINITION Q253=+750 ;AVANCE PRE-POSIT. Q200=+2 ;DISTANCE D'APPROCHE Q14=+0 ;SUREPAIS. LATERALE Q438=-1 ;NUMÉRO/NOM OUTIL D'ÉVIDEMENT? Q351=+1 ;MODE FRAISAGE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 10 Cycles d'usinage : fraisage de contour optimisé | Exemples de programmation 10.6 Exemples de programmation Exemple : Poche ouverte et reprise d'évidement avec des cycles OCM Le programme CN suivant fait appel aux cycles OCM. Une poche ouverte est programmée. Cela se fait via une limite et un îlot. Déroulement du programme Appeler la fraise d'ébauche Définir CONTOUR DEF Définition du cycle 271 Définir et appeler le cycle 272 Appeler la fraise de finition Définir et appeler le cycle 273 Définir et appeler le cycle 274 100 R5 70 0 0 30 70 100 -30 0 0 BEGIN PGM OCM_POCKET MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-30 Définition de la pièce brute 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL "MILL_D20" Z S8000 F1500 Appel de l’outil, diamètre 20 4 M3 5 L Z+250 R0 FMAX 6 L X+0 Y+0 R0 FMAX 7 CONTOUR DEF P1 = LBL 1 I2 = LBL 2 8 CYCL DEF 271 DONNEES CONTOUR OCM Q203=+0 ;COORD. SURFACE PIECE Q201=-10 ;PROFONDEUR Q368=+0.5 ;SUREPAIS. LATERALE Q369=+0.5 ;SUREP. DE PROFONDEUR Q260=+100 ;SICHERE HOEHE Q578=+0.2 ;FACTEUR COIN INTERIEUR Q569=+1 ;LIMITE OUVERTE 9 CYCL DEF 272 EBAUCHE OCM Q202=+5 ;PROFONDEUR DE PASSE Q370=+0.4 ;FACTEUR RECOUVREMENT Q207= AUTO ;AVANCE FRAISAGE Q568=+0.6 ;FACTEUR DE PLONGEE Q253=+750 ;AVANCE PRE-POSIT. Q200=+2 ;DISTANCE D'APPROCHE Q438=+0 ;OUTIL EVIDEMENT Q577=+0.2 ;FACT. RAYON D'APPROCHE Q351=+1 ;MODE FRAISAGE Définition des paramètres d'usinage Définir le cycle d'ébauche 10 CYCL CALL Appel du cycle 11 TOOL CALL "MILL_D8" Z S8000 F1500 Appel de l’outil, diamètre 8 12 M3 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 313 10 Cycles d'usinage : fraisage de contour optimisé | Exemples de programmation 13 L Z+250 R0 FMAX 14 L X+0 Y+0 R0 FMAX 15 CYCL DEF 272 EBAUCHE OCM Q202=+5 ;PROFONDEUR DE PASSE Q370=+0.4 ;FACTEUR RECOUVREMENT Q207= AUTO ;AVANCE FRAISAGE Q568=+0.6 ;FACTEUR DE PLONGEE Q253=+750 ;AVANCE PRE-POSIT. Q200=+2 ;DISTANCE D'APPROCHE Définir le cycle d'ébauche QS438="MILL_D20" ;OUTIL EVIDEMENT Q577=+0.2 ;FACT. RAYON D'APPROCHE Q351=+1 ;MODE FRAISAGE 16 CYCL CALL Appel du cycle 17 TOOL CALL "MILL_D6_FINISH" Z S10000 F2000 Appel de l’outil, diamètre 6 18 M3 19 L Z+250 R0 FMAX 20 L X+0 Y+0 R0 FMAX 21 CYCL DEF 273 PROF. FINITION OCM Q370=+0.8 ;FACTEUR RECOUVREMENT Q385= AUTO ;AVANCE DE FINITION Q568=+0.3 ;FACTEUR DE PLONGEE Q253=+750 ;AVANCE PRE-POSIT. Q200=+2 ;DISTANCE D'APPROCHE Q438=-1 ;OUTIL EVIDEMENT Définir la profondeur du cycle d'ébauche 22 CYCL CALL Appel du cycle 23 CYCL DEF 274 FINITION LATER. OCM Définir le cycle de finition latérale Q338=+0 ;PASSE DE FINITION Q385= AUTO ;AVANCE DE FINITION Q253=+750 ;AVANCE PRE-POSIT. Q200=+2 ;DISTANCE D'APPROCHE Q14=+0 ;SUREPAIS. LATERALE QS438=-1 ;OUTIL EVIDEMENT Q351=+1 ;MODE FRAISAGE 24 CYCL CALL Appel du cycle 25 M30 Fin du programme 26 LBL 1 Sous-programme de contour 1 27 L X+0 Y+0 28 L X+100 29 L Y+100 30 L X+0 31 L Y+0 32 LBL 0 33 LBL 2 314 Sous-programme de contour 2 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 10 Cycles d'usinage : fraisage de contour optimisé | Exemples de programmation 34 L X+0 Y+0 35 L X+100 36 L Y+100 37 L X+70 38 L Y+70 39 RND R5 40 L X+30 41 L Y+100 42 RND R5 43 L X+0 44 L Y+0 45 LBL 0 46 END PGM OCM_POCKET MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 315 10 Cycles d'usinage : fraisage de contour optimisé | Exemples de programmation Exemple : Différentes profondeurs avec des cycles OCM Le programme CN suivant fait appel aux cycles OCM. Une poche est définie, ainsi que deux îlots, à des hauteurs variées. Déroulement du programme Appeler la fraise d'ébauche Définir CONTOUR DEF Définition du cycle 271 Définir et appeler le cycle 272 Appeler la fraise de finition Définir et appeler le cycle 273 Définir et appeler le cycle 274 £100 £80 £40 £20 50 0 0 50 -30 15 5 0 0 BEGIN PGM OCM_DEPTH MM 1 BLK FORM 0.1 Z X-50 Y-50 Z-30 Définition de la pièce brute 2 BLK FORM 0.2 X+50 Y+50 Z+0 3 TOOL CALL "MILL_D10" Z S8000 F1500 Appeler l'outil de diamètre D10 4 L Z+250 R0 FMAX M3 5 L X+0 Y+0 R0 FMAX 6 CONTOUR DEF P1 = LBL 1 I2 = LBL 2 I3 = LBL 3 DEPTH5 7 CYCL DEF 271 DONNEES CONTOUR OCM Q203=+0 ;COORD. SURFACE PIECE Q201=-15 ;PROFONDEUR Q368=+0.5 ;SUREPAIS. LATERALE Q369=+0.5 ;SUREP. DE PROFONDEUR Q260=+100 ;SICHERE HOEHE Q578=+0.2 ;FACTEUR COIN INTERIEUR Q569=+0 ;LIMITE OUVERTE 8 CYCL DEF 272 EBAUCHE OCM Q202=+5 ;PROFONDEUR DE PASSE Q370=+0.4 ;FACTEUR RECOUVREMENT Q207= AUTO ;AVANCE FRAISAGE Q568=+0.6 ;FACTEUR DE PLONGEE Q253=+750 ;AVANCE PRE-POSIT. Q200=+2 ;DISTANCE D'APPROCHE Q438=+0 ;OUTIL EVIDEMENT Q577=+0.2 ;FACT. RAYON D'APPROCHE Q351=+1 ;MODE FRAISAGE Définition des paramètres d'usinage Définir le cycle d'ébauche 9 CYCL CALL Appel du cycle 10 TOOL CALL "MILL_D6_FINISH" Z S10000 F2000 Appeler l'outil de diamètre D6 11 M3 12 L Z+250 R0 FMAX 13 L X+0 Y+0 R0 FMAX 316 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 10 Cycles d'usinage : fraisage de contour optimisé | Exemples de programmation 14 CYCL DEF 273 PROF. FINITION OCM Q370=+0.8 ;FACTEUR RECOUVREMENT Q385= AUTO ;AVANCE DE FINITION Q568=+0.3 ;FACTEUR DE PLONGEE Q253=+750 ;AVANCE PRE-POSIT. Q200=+2 ;DISTANCE D'APPROCHE Q438=-1 ;OUTIL EVIDEMENT Définir la profondeur du cycle d'ébauche 15 CYCL CALL Appel du cycle 16 CYCL DEF 274 FINITION LATER. OCM Définir le cycle de finition latérale Q338=+0 ;PASSE DE FINITION Q385= AUTO ;AVANCE DE FINITION Q253=+750 ;AVANCE PRE-POSIT. Q200=+2 ;DISTANCE D'APPROCHE Q14=+0 ;SUREPAIS. LATERALE QS438="MILL_D10" ;OUTIL EVIDEMENT Q351=+1 ;MODE FRAISAGE 17 CYCL CALL Appel du cycle 18 M30 Fin du programme 19 LBL 1 Sous-programme de contour 1 20 L X-40 Y-40 21 L X+40 22 L Y+40 23 L X-40 24 L Y-40 25 LBL 0 26 LBL 2 Sous-programme de contour 2 27 L X-10 Y-10 28 L X+10 29 L Y+10 30 L X-10 31 L Y-10 32 LBL 0 33 LBL 3 Sous-programme de contour 3 34 L X-20 Y-20 35 L Y+20 36 L X+20 37 L Y-20 38 L X-20 39 LBL 0 40 END PGM OCM_DEPTH MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 317 11 Cycles d'usinage : corps d'un cylindre 11 Cycles d'usinage : corps d'un cylindre | Principes de base 11.1 Principes de base Résumé des cycles sur corps d'un cylindre Softkey 320 Cycle Page 27 CORPS D'UN CYLINDRE 321 28 CORPS D'UN CYLINDRE Rainurage 324 29 CORPS D'UN CYLINDRE Fraisage d'un ilot oblong 329 39 CORPS D'UN CYLINDRE Fraisage d'un contour extérieur 332 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 11 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE (cycle 27, DIN/ISO : G127, option 1) 11.2 POURTOUR CYLINDRIQUE (cycle 27, DIN/ISO : G127, option 1) Déroulement du cycle Consultez le manuel de votre machine ! La machine et la commande doivent avoir été préparées par le constructeur de la machine pour assurer l'interpolation du pourtour cylindrique. Ce cycle permet de transférer le développé d'un contour défini sur le corps d'un cylindre. Utilisez le cycle 28 si vous souhaitez usiner p. ex. des rainures de guidage sur un cylindre. Vous décrivez le contour dans un sous-programme que vous définissez avec le cycle 14 (CONTOUR). Dans le sous-programme, vous définissez toujours le contour avec les coordonnées X et Y, quels que soient les axes rotatifs qui équipent votre machine. La définition du contour est ainsi indépendante de la configuration de votre machine. Vous disposez des fonctions de contournage L, CHF, CR, RND et CT. Vous pouvez programmer les données de l'axe rotatif (coordonnées X) en degrés ou en mm (inch), au choix (à définir avec Q17 lors de la Définition du cycle). 1 La commande positionne l'outil au-dessus du point de plongée. La surépaisseur de finition n'est alors pas prise en compte. 2 L'outil usine à la première profondeur de passe en suivant le contour programmé, selon l'avance de fraisage Q12. 3 A la fin du contour, la commande amène l'outil à la distance d'approche, avant de le ramener au point de plongée. 4 Les étapes 1 à 3 sont répétées jusqu'à ce que la profondeur de fraisage programmée Q1 soit atteinte. 5 L'outil retourne ensuite à la hauteur de sécurité, dans l'axe d'outil. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Y (Z) X (C) 321 11 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE (cycle 27, DIN/ISO : G127, option 1) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Il faut toujours programmer les deux coordonnées du corps du cylindre dans la première séquence CN du sous-programme de contour. La taille de la mémoire réservée à un cycle SL est limitée. Dans un cycle SL, vous pouvez programmer au maximum 16384 éléments de contour. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Utiliser une fraise avec une coupe au centre (DIN 844). Le cylindre doit être fixé au centre du plateau circulaire. Initialisez le point d'origine au centre du plateau circulaire. L'axe de broche doit être perpendiculaire à la table du plateau circulaire lors de l'appel de cycle. Si cela n'est pas le cas, la commande émet un message d'erreur. Le cas échéant, il faudra commuter la cinématique. Vous pouvez également exécuter ce cycle avec le plan d’usinage incliné. La distance d'approche doit être supérieure au rayon d'outil. Le temps d'usinage peut être plus long si le contour est composé de nombreux éléments de contour non tangentiels. Si vous utilisez des paramètres Q de type QL locaux dans un programme de contour, il vous faudra aussi les affecter ou les calculer dans le sous-programme de contour. 322 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 11 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE (cycle 27, DIN/ISO : G127, option 1) Paramètres du cycle Q1 Profondeur de fraisage? (en incrémental) : distance entre le pourtour cylindrique et le fond du contour. Plage de programmation : -99999,9999 à 99999,9999 Q3 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan du déroulé du pourtour ; la surépaisseur est active dans le sens de la correction de rayon. Plage de programmation : -99999,9999 à 99999,9999 Q6 Distance d'approche? (en incrémental) : distance entre la face frontale de l'outil et le pourtour du cylindre. Plage de programmation : 0 à 99999,9999 Q10 Profondeur de passe? (en incrémental) : cote de chaque passe en plongée de l'outil. Plage de programmation : -99999,9999 à 99999,9999 Q11 Avance plongee en profondeur? : avance des mouvements de déplacement de l'axe de la broche. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Exemple 63 CYCL DEF 27 CORPS DU CYLINDRE Q1=-8 ;PROFONDEUR FRAISAGE Q3=+0 ;SUREPAIS. LATERALE Q6=+0 ;DISTANCE D'APPROCHE Q10=+3 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=350 ;AVANCE EVIDEMENT Q16=25 ;RAYON Q17=0 ;UNITE DE MESURE Q12 Avance évidement? : avance lors des mouvements de déplacement dans le plan d'usinage. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q16 Rayon du cylindre? : rayon du cylindre sur lequel le contour doit être usiné. Plage de programmation : 0 à 99999,9999 Q17 Unité mesure? degré=0 MM/POUCE=1 : programmer les coordonnées de l'axe rotatif dans le sous-programme, en degrés ou mm (inch) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 323 11 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE Rainurage (cycle 28, DIN/ISO : G128, option 1) 11.3 POURTOUR CYLINDRIQUE Rainurage (cycle 28, DIN/ISO : G128, option 1) Mode opératoire du cycle Consultez le manuel de votre machine ! La machine et la commande doivent avoir été préparées par le constructeur de la machine pour assurer l'interpolation du pourtour cylindrique. Ce cycle vous permet d'appliquer le développé d'une rainure de guidage sur le corps d'un cylindre. Contrairement au cycle 27, avec ce cycle, la commande met en place l'outil de manière à ce que, avec la correction de rayon activée, les parois soient presque parallèles entre elles. Vous obtenez des parois parfaitement parallèles en utilisant un outil dont la taille correspond exactement à la largeur de la rainure. Plus l'outil est petit en comparaison avec la largeur de la rainure et plus l'on constatera de déformations sur les trajectoires circulaires et les droites obliques. Pour réduire au maximum les déformations dues à ce procédé d'usinage, vous pouvez définir le paramètre Q21. Ce paramètre indique la tolérance entre la rainure usinée et la rainure à réaliser, avec un outil dont le diamètre est égal à la largeur de la rainure. Programmez la trajectoire centrale du contour en indiquant la correction du rayon d'outil. La correction de rayon vous permet de définir si la commande réalise la rainure en avalant ou en opposition. 1 La commande positionne l'outil au-dessus du point de plongée. 2 La commande déplace l'outil en verticale, à la première profondeur de passe. L'approche se fait de manière tangentielle ou bien en ligne droite avec l'avance de fraisage Q12. Le comportement d'approche dépend du paramètre ConfigDatum CfgGeoCycle (n°201000) apprDepCylWall (n°201004). 3 Pour la première profondeur de passe, l'outil fraise avec l'avance de fraisage Q12 le long de la paroi de la rainure, en tenant compte de la surépaisseur de finition. 4 A la fin du contour, la commande décale l'outil au niveau de la paroi opposée, puis le ramène au point de plongée. 5 Les phases 2 et 3 sont répétées jusqu'à ce que la profondeur de fraisage programmée Q1 soit atteinte. 6 Une fois que vous avez défini la tolérance Q21, la commande procède à la reprise d'usinage pour permettre d'obtenir le meilleur parallélisme possible entre les parois de la rainure. 7 L'outil retourne ensuite à la hauteur de sécurité, dans l'axe d'outil. 324 Y (Z) X (C) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 11 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE Rainurage (cycle 28, DIN/ISO : G128, option 1) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Une collision peut survenir si la broche n'est pas activée au moment de l’appel d’outil. Régler le paramètre displaySpindleErr (n°201002) sur On ou Off selon que voulez que la commande émette un message d'erreur ou non lorsque la broche n'est pas activée. REMARQUE Attention, risque de collision ! A la fin, la commande ramène l'outil à la distance d'approche ou au saut de bride (si programmé). La position finale de l'outil après l'exécution du cycle ne correspond pas forcément à la position initiale ! Contrôler les mouvements de déplacement de la machine La simulation permet de contrôler la position finale de l'outil après l'exécution du cycle. Une fois le cycle exécuté, programmer des coordonnées absolues (et non en incrémental) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 325 11 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE Rainurage (cycle 28, DIN/ISO : G128, option 1) Ce cycle exécute un usinage en incliné. Pour pouvoir exécuter ce cycle, il faut que le premier axe de la machine qui se trouve sous la table de la machine soit un axe rotatif. L'outil doit également pouvoir être positionné perpendiculairement à la surface du pourtour. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Il faut toujours programmer les deux coordonnées du corps du cylindre dans la première séquence CN du sous-programme de contour. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Utiliser une fraise avec une coupe au centre (DIN 844). Le cylindre doit être fixé au centre du plateau circulaire. Initialisez le point d'origine au centre du plateau circulaire. L'axe de broche doit être perpendiculaire à la table du plateau circulaire lors de l'appel de cycle. Vous pouvez également exécuter ce cycle avec le plan d’usinage incliné. La distance d'approche doit être supérieure au rayon d'outil. Le temps d'usinage peut être plus long si le contour est composé de nombreux éléments de contour non tangentiels. Si vous utilisez des paramètres Q de type QL locaux dans un programme de contour, il vous faudra aussi les affecter ou les calculer dans le sous-programme de contour. Définissez le comportement d'approche via le paramètre apprDepCylWall (n°201004) CircleTangential : pour exécuter une approche et une sortie tangentielles LineNormal : le déplacement jusqu'au point de départ du contour s'effectue en ligne droite. 326 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 11 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE Rainurage (cycle 28, DIN/ISO : G128, option 1) Paramètres du cycle Q1 Profondeur de fraisage? (en incrémental) : distance entre le pourtour cylindrique et le fond du contour. Plage de programmation : -99999,9999 à 99999,9999 Q3 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition sur la paroi de la rainure. La surépaisseur de finition diminue la largeur de la rainure du double de la valeur indiquée. Plage de programmation : -99999,9999 à 99999,9999 Q6 Distance d'approche? (en incrémental) : distance entre la face frontale de l'outil et le pourtour du cylindre. Plage de programmation : 0 à 99999,9999 Q10 Profondeur de passe? (en incrémental) : cote de chaque passe en plongée de l'outil. Plage de programmation : -99999,9999 à 99999,9999 Q11 Avance plongee en profondeur? : avance des mouvements de déplacement de l'axe de la broche. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Exemple 63 CYCL DEF 28 CORPS DU CYLINDRE Q1=-8 ;PROFONDEUR FRAISAGE Q3=+0 ;SUREPAIS. LATERALE Q6=+0 ;DISTANCE D'APPROCHE Q10=+3 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=350 ;AVANCE EVIDEMENT Q16=25 ;RAYON Q17=0 ;UNITE DE MESURE Q20=12 ;LARGEUR RAINURE Q21=0 ;TOLERANCE Q12 Avance évidement? : avance lors des mouvements de déplacement dans le plan d'usinage. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q16 Rayon du cylindre? : rayon du cylindre sur lequel le contour doit être usiné. Plage de programmation : 0 à 99999,9999 Q17 Unité mesure? degré=0 MM/POUCE=1 : programmer les coordonnées de l'axe rotatif dans le sous-programme, en degrés ou mm (inch) Q20 Largeur rainure? : largeur de la rainure à réaliser. Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 327 11 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE Rainurage (cycle 28, DIN/ISO : G128, option 1) Q21 Tolérance? : si vous utilisez un outil plus petit que la largeur de rainure Q20 programmée, les déplacements de l'outil entraîneront des déformations sur la paroi de la rainure, au niveau des cercles et des droites obliques. Si vous avez défini une tolérance Q21, la commande approche la rainure selon une procédure de fraisage supplémentaire, comme si vous aviez fraisé la rainure avec un outil dont la taille est parfaitement égale à la largeur de la rainure. Avec Q21, vous définissez l'écart autorisé par rapport à cette rainure idéale. Le nombre de reprises d'usinage dépend du rayon du cylindre, de l'outil utilisé et de la profondeur de la rainure. Plus la tolérance définie est faible, plus la rainure sera précise et plus la reprise d'usinage sera longue. Plage de programmation de la tolérance : 0,0001 à 9,9999 Recommandation : utiliser une tolérance de 0,02 mm. Fonction inactive : entrer 0 (configuration par défaut). 328 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE Fraisage de traverse (cycle 29, DIN/ISO : G129, option 1) 11.4 POURTOUR CYLINDRIQUE Fraisage de traverse (cycle 29, DIN/ISO : G129, option 1) Mode opératoire du cycle Consultez le manuel de votre machine ! La machine et la commande doivent avoir été préparées par le constructeur de la machine pour assurer l'interpolation du pourtour cylindrique. Ce cycle vous permet d'appliquer le développé d'un îlot donné sur le pourtour d'un cylindre. La commande positionne l'outil de manière à ce que les parois soient toujours parallèles avec la correction d'outil activée. Programmez la trajectoire du centre de l'îlot en renseignant la correction du rayon d'outil. En appliquant la correction de rayon, vous indiquez si la commande doit réaliser l'îlot en avalant ou en opposition. Aux extrémités de l'îlot, la commande ajoute toujours un demicercle dont le rayon correspond à la moitié de la largeur de l'îlot. 1 La commande positionne l'outil au-dessus du point initial de l'usinage. La commande calcule le point de départ à partir de la largeur de l'îlot et du diamètre de l'outil. Il est situé près du premier point défini dans le sous-programme de contour, décalé de la moitié de la largeur de l'îlot et de la valeur du diamètre de l'outil. La correction du rayon détermine si le déplacement doit commencer à gauche (1, RL=en avalant) ou à droite de l'îlot (2, RR=en opposition). 2 Une fois que la commande a positionné l'outil à la première profondeur de passe, l'outil se déplace sur un arc de cercle tangentiel à la paroi de la traverse, avec l'avance de fraisage Q12. Le cas échéant, la surépaisseur de finition est prise en compte. 3 A la première profondeur de passe, l'outil fraise selon l'avance de fraisage Q12 le long de la paroi de la traverse, jusqu’à ce que le tenon soit entièrement usiné. 4 L'outil s'éloigne ensuite par tangentement de la paroi et retourne au point initial de l'usinage. 5 Les étapes 2 à 4 sont répétées jusqu'à ce que la profondeur de fraisage programmée Q1 soit atteinte. 6 L'outil retourne ensuite à la hauteur de sécurité, dans l'axe d'outil. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Y (Z) X (C) 329 11 11 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE Fraisage de traverse (cycle 29, DIN/ISO : G129, option 1) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Une collision peut survenir si la broche n'est pas activée au moment de l’appel d’outil. Régler le paramètre displaySpindleErr (n°201002) sur On ou Off selon que voulez que la commande émette un message d'erreur ou non lorsque la broche n'est pas activée. Ce cycle exécute un usinage en incliné. Pour pouvoir exécuter ce cycle, il faut que le premier axe de la machine qui se trouve sous la table de la machine soit un axe rotatif. L'outil doit également pouvoir être positionné perpendiculairement à la surface du pourtour. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Il faut toujours programmer les deux coordonnées du corps du cylindre dans la première séquence CN du sous-programme de contour. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Utiliser une fraise avec une coupe au centre (DIN 844). Le cylindre doit être fixé au centre du plateau circulaire. Initialisez le point d'origine au centre du plateau circulaire. L'axe de broche doit être perpendiculaire à la table du plateau circulaire lors de l'appel de cycle. Si cela n'est pas le cas, la commande émet un message d'erreur. Le cas échéant, il faudra commuter la cinématique. La distance d'approche doit être supérieure au rayon d'outil. Si vous utilisez des paramètres Q de type QL locaux dans un programme de contour, il vous faudra aussi les affecter ou les calculer dans le sous-programme de contour. 330 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : corps d'un cylindre | POURTOUR CYLINDRIQUE Fraisage de traverse (cycle 29, DIN/ISO : G129, option 1) Paramètres du cycle Q1 Profondeur de fraisage? (en incrémental) : distance entre le pourtour cylindrique et le fond du contour. Plage de programmation : -99999,9999 à 99999,9999 Q3 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition sur la paroi de la traverse. La surépaisseur de finition augmente la largeur de la traverse du double de la valeur indiquée. Plage de programmation : -99999,9999 à 99999,9999 Q6 Distance d'approche? (en incrémental) : distance entre la face frontale de l'outil et le pourtour du cylindre. Plage de programmation : 0 à 99999,9999 Q10 Profondeur de passe? (en incrémental) : cote de chaque passe en plongée de l'outil. Plage de programmation : -99999,9999 à 99999,9999 Q11 Avance plongee en profondeur? : avance des mouvements de déplacement de l'axe de la broche. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Exemple 63 CYCL DEF 29 CORPS CYLIND. OBLONG Q1=-8 ;PROFONDEUR FRAISAGE Q3=+0 ;SUREPAIS. LATERALE Q6=+0 ;DISTANCE D'APPROCHE Q10=+3 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=350 ;AVANCE EVIDEMENT Q16=25 ;RAYON Q17=0 ;UNITE DE MESURE Q20=12 ;LARGEUR OBLONG Q12 Avance évidement? : avance lors des mouvements de déplacement dans le plan d'usinage. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q16 Rayon du cylindre? : rayon du cylindre sur lequel le contour doit être usiné. Plage de programmation : 0 à 99999,9999 Q17 Unité mesure? degré=0 MM/POUCE=1 : programmer les coordonnées de l'axe rotatif dans le sous-programme, en degrés ou mm (inch) Q20 Largeur oblong? : largeur de la traverse à réaliser. Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 331 11 11 Cycles d'usinage : corps d'un cylindre | CONTOUR POURTOUR CYLINDRIQUE (cycle 39, DIN/ISO : G139, option 1) 11.5 CONTOUR POURTOUR CYLINDRIQUE (cycle 39, DIN/ISO : G139, option 1) Exécution d'un cycle Consultez le manuel de votre machine ! La machine et la commande doivent avoir été préparées par le constructeur de la machine pour assurer l'interpolation du pourtour cylindrique. Ce cycle permet d'usiner un contour sur le pourtour d'un cylindre. Pour cela, vous définissez le contour sur le développé d'un cylindre. La commande positionne l'outil dans ce cycle de manière à ce que, avec la correction de rayon active, la paroi du contour fraisé soit parallèle à l'axe du cylindre. Vous décrivez le contour dans un sous-programme que vous définissez avec le cycle 14 (CONTOUR). Dans le sous-programme, vous définissez toujours le contour avec les coordonnées X et Y, quels que soient les axes rotatifs qui équipent votre machine. La définition du contour est ainsi indépendante de la configuration de votre machine. Vous disposez des fonctions de contournage L, CHF, CR, RND et CT. Contrairement aux cycles 28 et 29, vous définissez le contour réel à usiner dans le sous-programme de contour. 1 La commande positionne l'outil au-dessus du point initial de l'usinage. La commande place le point de départ avec un décalage de la valeur du diamètre de l'outil, à coté du premier point défini dans le sous-programme de contour. 2 La commande déplace ensuite l'outil verticalement pour l'amener à la première profondeur de passe. L'approche se fait de manière tangentielle ou bien en ligne droite avec l'avance de fraisage Q12. Au besoin, la surépaisseur de finition est prise en compte. (Le comportement d'approche dépend du paramètre ConfigDatum, CfgGeoCycle (n°201000), apprDepCylWall (n °201004).) 3 A la première profondeur de passe, l'outil fraise avec l'avance de fraisage Q12 le long du contour, jusqu’à ce que le tracé de contour défini soit entièrement usiné. 4 L'outil s'éloigne ensuite de la paroi du oblong de manière tangentielle et revient au point de départ de l'usinage. 5 Les étapes 2 à 4 sont répétées jusqu'à ce que la profondeur de fraisage programmée Q1 soit atteinte. 6 L'outil retourne ensuite à la hauteur de sécurité, dans l'axe d'outil. 332 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 11 Cycles d'usinage : corps d'un cylindre | CONTOUR POURTOUR CYLINDRIQUE (cycle 39, DIN/ISO : G139, option 1) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Une collision peut survenir si la broche n'est pas activée au moment de l’appel d’outil. Régler le paramètre displaySpindleErr (n°201002) sur On ou Off selon que voulez que la commande émette un message d'erreur ou non lorsque la broche n'est pas activée. Ce cycle exécute un usinage en incliné. Pour pouvoir exécuter ce cycle, il faut que le premier axe de la machine qui se trouve sous la table de la machine soit un axe rotatif. L'outil doit également pouvoir être positionné perpendiculairement à la surface du pourtour. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Il faut toujours programmer les deux coordonnées du corps du cylindre dans la première séquence CN du sous-programme de contour. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Réservez à l'outil assez de place latéralement pour les déplacements d'approche et de sortie du contour. Le cylindre doit être fixé au centre du plateau circulaire. Initialisez le point d'origine au centre du plateau circulaire. L'axe de broche doit être perpendiculaire à la table du plateau circulaire lors de l'appel de cycle. La distance d'approche doit être supérieure au rayon d'outil. Le temps d'usinage peut être plus long si le contour est composé de nombreux éléments de contour non tangentiels. Si vous utilisez des paramètres Q de type QL locaux dans un programme de contour, il vous faudra aussi les affecter ou les calculer dans le sous-programme de contour. Définissez le comportement d'approche via le paramètre apprDepCylWall (n°201004) CircleTangential : pour exécuter une approche et une sortie tangentielles LineNormal : le déplacement jusqu'au point de départ du contour s'effectue en ligne droite. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 333 11 Cycles d'usinage : corps d'un cylindre | CONTOUR POURTOUR CYLINDRIQUE (cycle 39, DIN/ISO : G139, option 1) Paramètres du cycle Q1 Profondeur de fraisage? (en incrémental) : distance entre le pourtour cylindrique et le fond du contour. Plage de programmation : -99999,9999 à 99999,9999 Q3 Surepaisseur finition laterale? (en incrémental) : surépaisseur de finition dans le plan du déroulé du pourtour ; la surépaisseur est active dans le sens de la correction de rayon. Plage de programmation : -99999,9999 à 99999,9999 Q6 Distance d'approche? (en incrémental) : distance entre la face frontale de l'outil et le pourtour du cylindre. Plage de programmation : 0 à 99999,9999 Q10 Profondeur de passe? (en incrémental) : cote de chaque passe en plongée de l'outil. Plage de programmation : -99999,9999 à 99999,9999 Q11 Avance plongee en profondeur? : avance des mouvements de déplacement de l'axe de la broche. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Exemple 63 CYCL DEF 39 CONT. SURF. CYLINDRE Q1=-8 ;PROFONDEUR FRAISAGE Q3=+0 ;SUREPAIS. LATERALE Q6=+0 ;DISTANCE D'APPROCHE Q10=+3 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=350 ;AVANCE EVIDEMENT Q16=25 ;RAYON Q17=0 ;UNITE DE MESURE Q12 Avance évidement? : avance lors des mouvements de déplacement dans le plan d'usinage. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q16 Rayon du cylindre? : rayon du cylindre sur lequel le contour doit être usiné. Plage de programmation : 0 à 99999,9999 Q17 Unité mesure? degré=0 MM/POUCE=1 : programmer les coordonnées de l'axe rotatif dans le sous-programme, en degrés ou mm (inch) 334 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 11 Cycles d'usinage : corps d'un cylindre | Exemples de programmation 11.6 Exemples de programmation Exemple : corps d'un cylindre avec le cycle 27 Machine équipée d'une tête B et d'une table C Cylindre fixé au centre du plateau circulaire Le point d'origine se trouve sur la face inférieure, au centre du du plateau circulaire. Y (Z) X (C) 0 BEGIN PGM C27 MM 1 TOOL CALL 1 Z S2000 Appel de l’outil, diamètre 7 2 L Z+250 R0 FMAX Dégager l'outil 3 L X+50 Y0 R0 FMAX Prépositionner l’outil 4 PLANE SPATIAL SPA+0 SPB+90 SPC+0 TURN MBMAX FMAX Inclinaison 5 CYCL DEF 14.0 CONTOUR Définition du sous-programme de contour 6 CYCL DEF 14.1 LABEL CONTOUR 1 7 CYCL DEF 27 CORPS DU CYLINDRE Q1=-7 ;PROFONDEUR FRAISAGE Q3=+0 ;SUREPAIS. LATERALE Q6=2 ;DISTANCE D'APPROCHE Q10=4 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=250 ;AVANCE EVIDEMENT Q16=25 ;RAYON Q17=1 ;UNITE DE MESURE Définition des paramètres d'usinage 8 L C+0 R0 FMAX M13 M99 Pré-positionner le plateau circulaire, marche broche, appel du cycle 9 L Z+250 R0 FMAX Dégager l'outil 10 PLANE RESET TURN FMAX Annuler l'inclinaison, annuler la fonction PLANE 11 M2 Fin du programme 12 LBL 1 Sous-programme du contour 13 L X+40 Y+20 RL Données dans l’axe rotatif en mm (Q17=1) 14 L X+50 15 RND R7.5 16 L Y+60 17 RN R7.5 18 L IX-20 19 RND R7.5 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 335 11 Cycles d'usinage : corps d'un cylindre | Exemples de programmation 20 L Y+20 21 RND R7.5 22 L X+40 Y+20 23 LBL 0 24 END PGM C27 MM 336 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 11 Cycles d'usinage : corps d'un cylindre | Exemples de programmation Exemple : corps d'un cylindre avec le cycle 28 Cylindre fixé au centre du plateau circulaire Machine équipée d'une tête B et d'une table C Le point d'origine se trouve au centre du plateau circulaire. Description de la trajectoire du centre dans le sous-programme de contour Y (Z) X (C) 0 BEGIN PGM C28 MM 1 TOOL CALL 1 Z S2000 Appel de l'outil, axe de l'outil Z, diamètre 7 2 L Z+250 R0 FMAX Dégager l'outil 3 L X+50 Y+0 R0 FMAX Prépositionner l’outil 4 PLANE SPATIAL SPA+0 SPB+90 SPC+0 TURN FMAX Inclinaison 5 CYCL DEF 14.0 CONTOUR Définition du sous-programme de contour 6 CYCL DEF 14.1 LABEL CONTOUR 1 7 CYCL DEF 28 CORPS DU CYLINDRE Q1=-7 ;PROFONDEUR FRAISAGE Q3=+0 ;SUREPAIS. LATERALE Q6=2 ;DISTANCE D'APPROCHE Q10=-4 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=250 ;AVANCE EVIDEMENT Q16=25 ;RAYON Q17=1 ;UNITE DE MESURE Q20=10 ;LARGEUR RAINURE Q21=0.02 ;TOLERANCE Définition des paramètres d'usinage Reprise d'usinage active 8 L C+0 R0 FMAX M3 M99 Pré-positionner le plateau circulaire, marche broche, appel du cycle 9 L Z+250 R0 FMAX Dégager l'outil 10 PLANE RESET TURN FMAX Annuler l'inclinaison, annuler la fonction PLANE 11 M2 Fin du programme 12 LBL 1 Sous-programme de contour, description de la trajectoire du centre 13 L X+60 Y+0 RL Données dans l’axe rotatif en mm (Q17=1) 14 L Y-35 15 L X+40 Y-52.5 16 L Y-70 17 LBL 0 18 END PGM C28 MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 337 12 Cycles d'usinage : poche de contour avec formule de contour 12 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe 12.1 Cycles S avec formule de contour complexe Principes de base Avec les cycles SL et la formule complexe de contour, vous pouvez composer des contours complexes constitués de contours partiels (poches ou îlots). Les différentes sections de contour (données de géométrie) se programment sous forme de programmes CN distincts. Tous les contours partiels sont ainsi réutilisables à volonté. A partir des contours partiels sélectionnés, reliés entre eux par une formule de contour, la commande calcule le contour en entier. La mémoire est limitée à maximum 128 contours pour un cycle SL (tous les programmes de description de contour). Le nombre des éléments de contour possibles dépend du type de contour (contour interne/externe) ainsi que du nombre des descriptions de contour qui est au maximum de 16384 éléments. Les cycles SL avec formule de contour imposent d'avoir un programme structuré, mais permettent d'intégrer dans différents programmes CN des contours qui reviennent régulièrement. Au moyen de la formule de contour, vous liez entre eux les contours partiels pour obtenir un contour final et définissez s'il s'agit d'une poche ou d'un îlot. La fonction des cycles SL avec formule de contour est reprise dans plusieurs zones de l'interface utilisateur de la commande et sert de base à d'autres développements. Schéma : usinage avec les cycles SL et formule complexe de contour 0 BEGIN PGM CONTOUR MM ... 5 SEL CONTOUR "MODEL" 6 CYCL DEF 20 DONNEES DU CONTOUR ... 8 CYCL DEF 22 EVIDEMENT ... 9 CYCL CALL ... 12 CYCL DEF 23 FINITION EN PROF. ... 13 CYCL CALL ... 16 CYCL DEF 24 FINITION LATERALE ... 17 CYCL CALL 63 L Z+250 R0 FMAX M2 64 END PGM CONTOUR MM 340 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe Caractéristiques des contours partiels La commande détecte tous les contours comme poche. Ne programmez pas de correction de rayon. La commande ignore les avances F et les fonctions auxiliaires M. Les conversions de coordonnées sont autorisées – si celles-ci sont programmées dans les contours partiels, elles agissent également dans les programmes CN appelés suivants ; elles n'ont toutefois pas besoin d'être réinitialisées après l'appel du cycle. Les programmes CN appelés peuvent aussi contenir des coordonnées dans l'axe de broche, mais celles-ci sont ignorées. Vous définissez le plan d'usinage dans la première séquence de coordonnées du programme CN. Si nécessaire, vous pouvez définir différentes profondeurs pour les contours partiels Caractéristiques des cycles d'usinage Avant chaque cycle, la commande positionne automatiquement l'outil à la distance d'approche. Chaque niveau de profondeur est fraisé sans relever l'outil ; les îlots sont contournés latéralement. Le rayon des "angles intérieurs" est programmable. L'outil ne reste pas immobile, les marques de brise-copeaux sont évitées (vaut pour la trajectoire la plus externe lors de l'évidement et de la finition latérale). En cas de finition latérale, la commande déplace l'outil sur une trajectoire circulaire tangentielle. En cas de finition en profondeur, la commande déplace également l'outil selon une trajectoire circulaire jusqu'à la pièce (par ex. : axe de la broche Z : trajectoire circulaire dans le plan Z/X). La commande usine le contour en continu, en avalant ou en opposition. Les données d'usinage telles que la profondeur de fraisage, les surépaisseurs et la distance d'approche sont à renseigner dans le cycle 20 DONNEES DU CONTOUR. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Schéma : calcul des contours partiels avec formule de contour 0 BEGIN PGM MODEL MM 1 DECLARE CONTOUR QC1 = "CERCLE1" 2 DECLARE CONTOUR QC2 = "CERCLEXY" DEPTH15 3 DECLARE CONTOUR QC3 = "TRIANGLE" DEPTH10 4 DECLARE CONTOUR QC4 = "CARRE" DEPTH5 5 QC10 = ( QC1 | QC3 | QC4 ) \ QC2 6 END PGM MODELE MM 0 BEGIN PGM CERCLE1 MM 1 CC X+75 Y+50 2 LP PR+45 PA+0 3 CP IPA+360 DR+ 4 END PGM CERCLE1 MM 0 BEGIN PGM CERCLE31XY MM ... ... 341 12 12 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe Sélectionner le programme CN avec les définitions de contours Utiliser la fonction SEL CONTOUR pour sélectionner un programme CN contenant des définitions de contours à partir desquelles la commande extrait les descriptions de contours : Procédez comme suit : Appuyer sur la touche SPEC FCT Appuyer sur la softkey USINAGE CONTOUR ET POINT Appuyer sur la softkey SEL CONTOUR Entrer le nom complet du programme CN contenant les définitions de contours Sinon, appuyer sur la softkey SELECTIONNER FICHIER et sélectionner le programme Valider avec la touche FIN Programmer la séquence SEL CONTOUR avant les cycles SL. Le cycle 14 CONTOUR n'est plus nécessaire si vous utilisez SEL CONTOUR. 342 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe Définir les descriptions de contour La fonction DECLARE CONTOUR vous permet d'attribuer à un programme CN le chemin des programmes CN à partir desquels la commande extrait les descriptions de contours. Vous pouvez en outre sélectionner une profondeur distincte pour la description de contour (fonction FCL 2). Procédez comme suit : Appuyer sur la touche SPEC FCT Appuyer sur la softkey USINAGE CONTOUR ET POINT Appuyer sur la softkey DECLARE CONTOUR Entrer l'identifiant du contour QC Appuyer sur la touche ENT Entrer le nom complet du programme CN, avec les définitions de contours, et valider avec la touche END Sinon, appuyer sur la softkey SELECTIONNER FICHIER et sélectionner le programme CN Définir une profondeur séparée pour le contour sélectionné Appuyer sur la touche END Grâce aux indicatifs de contour QC que vous avez introduits, vous pouvez relier entre eux les différents contours dans la formule de contour. Si vous utiliser des contours avec profondeur séparée, vous devez alors attribuer une profondeur à tous les contours partiels (si nécessaire, indiquer la profondeur 0). Différentes profondeurs (DEPTH) ne sont prises en compte que pour les éléments qui se chevauchent. Ceci n'est pas le cas pour les îlots purs d'une poche. Utilisez pour cela la formule de contour simple. Informations complémentaires : "Cycles SL avec formule de contour simple", Page 351 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 343 12 12 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe Introduire une formule complexe de contour A l'aide des softkeys, vous pouvez lier entre eux différents contours avec une formule mathématique : Procédez comme suit : Appuyer sur la touche SPEC FCT Appuyer sur la softkey USINAGE CONTOUR ET POINT Appuyer sur la softkey FORMULE CONTOUR Entrer l'identifiant du contour QC Appuyer sur la touche ENT La commande affiche les softkeys suivantes : Softkey Fonction de liaison s'intersectionne avec par ex. QC10 = QC1 & QC5 se réunit avec par ex. QC25 = QC7 | QC18 se réunit avec, mais sans intersection par ex. QC12 = QC5 ^ QC25 sans par ex. QC25 = QC1 \ QC2 parenthèse d'ouverture par ex. QC12 = QC1 * (QC2 + QC3) parenthèse de fermeture par ex. QC12 = QC1 * (QC2 + QC3) définition de contour individuel par ex. QC12 = QC1 344 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe Contours superposés La commande considère un contour programmé comme étant une poche. Grâce aux fonctions de formule de contour, vous pouvez convertir un contour en îlot. Un nouveau contour peut être construit en superposant des poches et des îlots. De cette manière, vous pouvez agrandir la surface d'une poche par superposition d'une autre poche ou la réduire avec un îlot. Sous-programmes : poches superposées Les exemples de programmation suivants correspondent à des programmes avec description de contour qui sont définis dans un programme de définition de contour. Le programme de définition de contour doit lui-même être appelé dans le programme principal avec la fonction SEL CONTOUR. Les poches A et B se superposent. La commande calcule les points d’intersection S1 et S2. Vous n'avez donc pas besoin de les programmer. Les poches sont programmées comme des cercles entiers. Programme de description de contour 1: Poche A 0 BEGIN PGM POCHE_A MM 1 L X+10 Y+50 R0 2 CC X+35 Y+50 3 C X+10 Y+50 DR4 END PGM POCHE_A MM Programme de description de contour 2 : poche B 0 BEGIN PGM POCHE_B MM 1 L X+90 Y+50 R0 2 CC X+65 Y+50 3 C X+90 Y+50 DR4 END PGM POCHE_B MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 345 12 12 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe Surface „d'addition“ Les deux surfaces partielles A et B, y compris leurs surfaces communes, doivent être usinées : Les surfaces A et B doivent être programmées dans des programmes CN distincts, sans correction de rayon. Dans la formule de contour, les surfaces A et B sont prises en compte avec la fonction “réuni avec“ Programme de définition de contour : 50 ... 51 ... 52 DECLARE CONTOUR QC1 = "POCHE_A.H" 53 DECLARE CONTOUR QC2 = "POCHE_B.H" 54 QC10 = QC1 | QC2 55 ... 56 ... Surface „de soustraction“ La surface A doit être usinée sans la partie recouverte par B: Les surfaces A et B doivent être programmées dans des programmes CN distincts, sans correction de rayon. Dans la formule de contour, la surface B est soustraite de la surface A avec la fonction sans. Programme de définition de contour : 50 ... 51 ... 52 DECLARE CONTOUR QC1 = "POCHE_A.H" 53 DECLARE CONTOUR QC2 = "POCHE_B.H" 54 QC10 = QC1 \ QC2 55 ... 56 ... 346 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe Surface „d'intersection“ La surface commune de recouvrement de A et de B doit être usinée. (Les surfaces sans recouvrement ne doivent pas être usinées.) Les surfaces A et B doivent être programmées dans des programmes CN distincts, sans correction de rayon. Dans la formule de contour, les surfaces A et B sont prises en compte avec la fonction “intersection avec“ Programme de définition de contour : 50 ... 51 ... 52 DECLARE CONTOUR QC1 = "POCHE_A.H" 53 DECLARE CONTOUR QC2 = "POCHE_B.H" 54 QC10 = QC1 & QC2 55 ... 56 ... Usinage du contour avec les cycles SL L'usinage du contour global défini est réalisé avec les cycles SL 20 - 24 (voir "Résumé", Page 254). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 347 12 12 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe Exemple : Ebauche et finition de contours superposés avec formule de contour 0 BEGIN PGM CONTOUR MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-40 Définition de la pièce brute 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S2500 Appel de l'outil d'ébauche 4 L Z+250 R0 FMAX Dégager l'outil 5 SEL CONTOUR “MODEL“ Définition du programme de définition du contour 6 CYCL DEF 20 DONNEES DU CONTOUR Définition des paramètres d'usinage généraux Q1=-20 ;PROFONDEUR FRAISAGE Q2=1 ;FACTEUR RECOUVREMENT Q3=+0.5 ;SUREPAIS. LATERALE Q4=+0.5 ;SUREP. DE PROFONDEUR Q5=+0 ;COORD. SURFACE PIECE Q6=2 ;DISTANCE D'APPROCHE Q7=+100 ;HAUTEUR DE SECURITE Q8=0.1 ;RAYON D'ARRONDI Q9=-1 ;SENS DE ROTATION 348 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe 7 CYCL DEF 22 EVIDEMENT Q10=5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=350 ;AVANCE EVIDEMENT Q18=0 ;OUTIL PRE-EVIDEMENT Q19=150 ;AVANCE PENDULAIRE Q208=+99999 ;AVANCE RETRAIT Q401=100 ;FACTEUR D'AVANCE Q404=0 ;STRAT. SEMI-FINITION Définition du cycle d'évidement 8 CYCL CALL M3 Appel du cycle d'évidement 9 TOOL CALL 2 Z S5000 Appel de la fraise de finition 10 CYCL DEF 23 FINITION EN PROF. Définition du cycle de finition en profondeur Q11=100 ;AVANCE PLONGEE PROF. Q12=200 ;AVANCE EVIDEMENT Q208=+99999 ;AVANCE RETRAIT 11 CYCL CALL M3 Appel du cycle de finition en profondeur 12 CYCL DEF 24 FINITION LATERALE Définition du cycle de finition latérale Q9=+1 ;SENS DE ROTATION Q10=5 ;PROFONDEUR DE PASSE Q11=100 ;AVANCE PLONGEE PROF. Q12=400 ;AVANCE EVIDEMENT Q14=+0 ;SUREPAIS. LATERALE 13 CYCL CALL M3 Appel du cycle de finition latérale 14 L Z+250 R0 FMAX M2 Dégagement de l'outil, fin du programme 15 END PGM KONTUR MM Programme de définition du contour avec formule de contour : 0 BEGIN PGM MODEL MM Programme de définition de contour 1 DECLARE CONTOUR QC1 = "CERCLE1" Définition de l'identifiant de contour pour le programme CN "CERCLE1" 2 FN 0: Q1 =+35 Affecter valeur pour paramètres utilisés dans PGM “CERCLE31XY“ 3 FN 0: Q2 =+50 4 FN 0: Q3 =+25 5 DECLARE CONTOUR QC2 = "CERCLE31XY" Définition de l'identifiant de contour pour le programme CN "CERCLE31XY" 6 DECLARE CONTOUR QC3 = "TRIANGLE" Définition de l'identifiant de contour pour le programme CN "TRIANGLE" 7 DECLARE CONTOUR QC4 = "CARRE" Définition de l'identifiant de contour pour le programme CN "CARRE" 8 QC10 = ( QC 1 | QC 2 ) \ QC 3 \ QC 4 Formule de contour 9 END PGM MODELE MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 349 12 12 Cycles d'usinage : poche de contour avec formule de contour | Cycles S avec formule de contour complexe Programmes de description de contour : 0 BEGIN PGM CERCLE1 MM Programme de description de contour : cercle droit 1 CC X+65 Y+50 2 L PR+25 PA+0 R0 3 CP IPA+360 DR+ 4 END PGM CERCLE1 MM 0 BEGIN PGM CERCLE31XY MM Programme de description de contour : cercle gauche 1 CC X+Q1 Y+Q2 2 LP PR+Q3 PA+0 R0 3 CP IPA+360 DR+ 4 END PGM CERCLE31XY MM 0 BEGIN PGM TRIANGLE MM Programme de description de contour : triangle droit 1 L X+73 Y+42 R0 2 L X+65 Y+58 3 L X+58 Y+42 4 L X+73 5 END PGM TRIANGLE MM 0 BEGIN PGM CARRE MM Programme de description de contour : carré gauche 1 L X+27 Y+58 R0 2 L X+43 3 L Y+42 4 L X+27 5 L Y+58 6 END PGM QUADRAT MM 350 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : poche de contour avec formule de contour | Cycles SL avec formule de contour simple 12.2 Cycles SL avec formule de contour simple Principes de base Les cycles SL et la formule de contour simple vous permettent de former facilement des contours en combinant jusqu'à neuf sections de contour (poches ou îlots). La commande calcule le contour entier à partir des contours partiels sélectionnés. La mémoire est limitée à maximum 128 contours pour un cycle SL (tous les programmes de description de contour). Le nombre des éléments de contour possibles dépend du type de contour (contour interne/externe) ainsi que du nombre des descriptions de contour qui est au maximum de 16384 éléments. Schéma : usinage avec les cycles SL et formule complexe de contour 0 BEGIN PGM CONTDEF MM ... 5 CONTOUR DEF P1= "POCK1.H" I2 = "ISLE2.H" DEPTH5 I3 "ISLE3.H" DEPTH7.5 6 CYCL DEF 20 DONNEES DU CONTOUR ... 8 CYCL DEF 22 EVIDEMENT ... 9 CYCL CALL ... 12 CYCL DEF 23 FINITION EN PROF. ... 13 CYCL CALL ... 16 CYCL DEF 24 FINITION LATERALE ... 17 CYCL CALL 63 L Z+250 R0 FMAX M2 64 END PGM CONTDEF MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 351 12 12 Cycles d'usinage : poche de contour avec formule de contour | Cycles SL avec formule de contour simple Caractéristiques des contours partiels Ne programmez pas de correction de rayon La commande ignore les avances F et les fonctions auxiliaires M. Les conversions de coordonnées sont autorisées – si celles-ci sont programmées dans les contours partiels, elles agissent également dans les sous-programmes suivants ; elles n'ont toutefois pas besoin d'être réinitialisées après l'appel du cycle. Les sous-programmes peuvent aussi contenir des coordonnées dans l'axe de broche, mais celles-ci sont ignorées. Vous définissez le plan d'usinage dans la première séquence de coordonnées du sous-programme. Caractéristiques des cycles d'usinage Avant chaque cycle, la commande positionne automatiquement l'outil à la distance d'approche. Chaque niveau de profondeur est fraisé sans relever l'outil ; les îlots sont contournés latéralement. Le rayon des "angles intérieurs" est programmable. L'outil ne reste pas immobile, les marques de brise-copeaux sont évitées (vaut pour la trajectoire la plus externe lors de l'évidement et de la finition latérale). En cas de finition latérale, la commande déplace l'outil sur une trajectoire circulaire tangentielle. En cas de finition en profondeur, la commande déplace également l'outil selon une trajectoire circulaire jusqu'à la pièce (par ex. : axe de la broche Z : trajectoire circulaire dans le plan Z/ X). La commande usine le contour en continu, en avalant ou en opposition. Les données d'usinage telles que la profondeur de fraisage, les surépaisseurs et la distance d'approche sont à renseigner dans le cycle 20 DONNEES DU CONTOUR. 352 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles d'usinage : poche de contour avec formule de contour | Cycles SL avec formule de contour simple Introduire une formule simple de contour A l'aide des softkeys, vous pouvez lier entre eux différents contours avec une formule mathématique : Procédez comme suit : Appuyer sur la touche SPEC FCT Appuyer sur la softkey USINAGE CONTOUR ET POINT Appuyer sur la softkey CONTOUR DEF Appuyer sur la touche ENT La commande lance la programmation de la formule de contour. Programmer le premier contour partiel et valider avec la touche ENT Appuyer sur la softkey POCHE Sinon, appuyer sur la softkey ILOT Programmer le deuxième contour partiel et valider avec la touche ENT Au besoin, définir la profondeur du deuxième contour partiel. Valider avec la touche ENT Poursuivre le dialogue tel que décrit précédemment, jusqu'à ce que vous ayez fini de définir tous les contours partiels. La CN propose différentes manières de programmer le contour : Softkey Fonction Définir le nom du contour Sinon, appuyer sur la softkey SELECTION FICHIER Définir le numéro d'un paramètre string Définir le numéro d'un label Définir le nom d'un label Définir le numéro d'un paramètre string d'un label HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 353 12 12 Cycles d'usinage : poche de contour avec formule de contour | Cycles SL avec formule de contour simple La liste des contours partiels doit toujours débuter par la poche la plus profonde! Si le contour est défini comme îlot, la commande interprète la profondeur programmée comme étant la hauteur de l'îlot. La valeur renseignée (sans signe) se réfère alors à la surface de la pièce ! Si la valeur 0 a été introduite pour la profondeur, c'est la profondeur définie dans le cycle 20 qui est valable pour les poches. Les îlots sont au niveau de la surface de la pièce ! Usinage du contour avec les cycles SL L'usinage du contour global défini est réalisé avec les cycles SL 20 - 24 (voir "Résumé", Page 254). 354 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales 13 Cycles : fonctions spéciales | Principes de base 13.1 Principes de base Résumé La commande propose les cycles suivants pour les applications spéciales suivantes : Softkey 356 Cycle Page 9 TEMPORISATION 357 12 Appel de programme 358 13 Orientation de la broche 360 32 TOLERANCE 361 225 GRAVAGE de texte 365 232 SURFACAGE 371 238 MESURE ETAT MACHINE 376 239 CALCUL DE LA CHARGE 378 18 Filetage 381 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales | TEMPORISATION (cycle 9, DIN/ISO : G04) 13.2 TEMPORISATION (cycle 9, DIN/ISO : G04) Fonction L'exécution du programme est suspendue pendant la durée de la TEMPORISATION. Une temporisation peut par exemple servir à briser les copeaux. Le cycle est actif à partir du moment où il a été défini dans le programme CN. Les états (qui restent) actifs de manière modale restent inchangés, comme par exemple la rotation de la broche. Ce cycle peut être exécuté en mode FUNCTION MODE MILL, FUNCTION MODE TURN et en mode FUNCTION DRESS. Exemple 89 CYCL DEF 9.0 TEMPORISATION 90 CYCL DEF 9.1 TEMP 1.5 Paramètres du cycle Temporisation en secondes : entrer la temporisation en secondes. Plage de programmation : 0 à 3600 s (1 heure) par pas de 0,001 s HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 357 13 Cycles : fonctions spéciales | APPEL DE PROGRAMME (cycle 12, DIN/ISO : G39) 13.3 APPEL DE PROGRAMME (cycle 12, DIN/ISO : G39) Fonction du cycle Vous pouvez utiliser n'importe quel programme CN en qualité de cycle d'usinage, par exemple pour des cycles d'usinage spéciaux ou des modules géométriques. Vous appelez alors ce programme CN comme un cycle. Attention lors de la programmation ! Ce cycle peut être exécuté en mode FUNCTION MODE MILL, FUNCTION MODE TURN et en mode FUNCTION DRESS. Le programme CN appelé doit être enregistré sur la mémoire interne de la commande. Si vous n'indiquez que le nom du programme, le programme CN défini comme cycle devra se trouver dans le même répertoire que le programme CN appelant. Si le programme CN défini comme cycle ne se trouve pas dans le même répertoire que le programme CN appelant, vous devrez indiquer le chemin complet, par ex. TNC:\KLAR35\FK1\50.H. Si vous souhaitez utiliser un programme DIN/ISO comme cycle, vous devrez renseigner les fichiers de type .I à la suite du nom du programme. Lors d'un appel de programme avec le cycle 12, les paramètres Q agissent systématiquement de manière globale. Par conséquent, il est à noter que toute modification apportée aux paramètres Q du programme CN appelé aura une répercussion sur le programme CN appelant. 358 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales | APPEL DE PROGRAMME (cycle 12, DIN/ISO : G39) Paramètres du cycle Nom du programme : entrer le nom du programme CN appelant (éventuellement avec son chemin), à l'intérieur duquel le programme CN se trouve, ou Utiliser la softkey SELECTION pour activer le dialogue de sélection du fichier Sélectionner le programme CN appelant Renseigner le programme CN 50.h comme cycle et l'appeler avec M99 55 CYCL DEF 12.0 PGM CALL 56 CYCL DE 12.1 PGM TNC: \KLAR35\FK1\50.H 57 L X+20 Y+50 FMAX M99 Le programme CN peut être appelé avec : CYCL CALL (séquence CN distincte) ou M99 (pas à pas) ou M89 (après chaque séquence de positionnement) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 359 13 Cycles : fonctions spéciales | ORIENTATION BROCHE (cycle 13, DIN/ISO : G36) 13.4 ORIENTATION BROCHE (cycle 13, DIN/ISO : G36) Fonction du cycle Consultez le manuel de votre machine ! La machine et la commande doivent avoir été préparées par le constructeur de la machine. La commande peut piloter la broche principale d'une machine-outil et la tourner pour l'orienter selon un angle donné. L'orientation de la broche s'avère par exemple nécessaire : lorsqu'un changement d'outil doit se faire à une position donnée, avec un système de changement d'outils pour aligner la fenêtre émettrice/réceptrice des palpeurs 3D à transmission infrarouge La commande gère la position angulaire définie dans le cycle en programmant M19 ou M20 (en fonction de la machine). Si vous programmez M19 ou M20 sans avoir définir le cycle 13 au préalable. La CN positionne la broche principale à une valeur angulaire définie par le constructeur de la machine. Exemple 93 CYCL DEF 13.0 ORIENTATION 94 CYCL DEF 13.1 ANGLE 180 Attention lors de la programmation! Ce cycle peut être exécuté en mode FUNCTION MODE MILL, FUNCTION MODE TURN et en mode FUNCTION DRESS. Dans les cycles d'usinage 202, 204 et 209, le cycle 13 est utilisé de manière interne. Dans votre programme CN, notez qu'il faudra éventuellement reprogrammer le cycle 13 après l'un des cycles d'usinage indiqués cidessus. Paramètres du cycle Angle d'orientation : programmer l'angle par rapport à l'axe de référence angulaire du plan d'usinage. Plage de programmation : 0,0000° à 360,0000° 360 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales | TOLERANCE (cycle 32, DIN/ISO : G62) 13.5 TOLERANCE (cycle 32, DIN/ISO : G62) Fonction du cycle La machine et la commande doivent avoir été préparées par le constructeur de la machine. Avec les données du cycle 32, vous pouvez agir sur le résultat de l’usinage UGV (en termes de précision, de qualité de surface et de vitesse), à condition toutefois que la commande soit adaptée aux caractéristiques spécifiques de la machine. La commande lisse automatiquement le contour entre des éléments de contour quelconques (non corrigés ou corrigés). L'outil se déplace ainsi en continu sur la surface de la pièce tout en épargnant la mécanique de la machine. La tolérance définie dans le cycle agit également sur les trajectoires circulaires. Si nécessaire, la commande réduit automatiquement l'avance programmée de telle sorte que le programme soit toujours exécuté "sans à-coups" par la commande, à la vitesse la plus élevée possible. Même si la commande se déplace à une vitesse non réduite, la tolérance que vous avez définie est systématiquement garantie. Plus la tolérance que vous définissez est grande, plus la commande sera en mesure de se déplacer rapidement. Le lissage du contour engendre un écart. La valeur correspondant à l'écart par rapport au contour (tolérance) est définie par le constructeur de votre machine dans un paramètre machine. Le cycle 32 permet de modifier la tolérance par défaut et de sélectionner diverses configurations de filtre, à condition toutefois que le constructeur de votre machine exploite ces possibilités de configuration. Influences lors de la définition géométrique dans le système de FAO Lors de la création externe du programme CN sur un système de FAO, le paramétrage de l'erreur de corde S est un facteur d'influence essentiel. L'erreur de corde revient à définir l'écart maximal de points autorisé pour un programme CN généré avec un post-processeur (PP). Si l'erreur de corde est inférieure ou égale à la valeur de tolérance T sélectionnée dans dans le cycle 32, la commande ne pourra lisser les points de contour que si l'avance programmée n'est pas limitée par des paramètres machine spéciaux. Vous obtenez un lissage optimal du contour en introduisant la tolérance dans le cycle 32 de manière à ce qu’elle soit comprise entre 1,1 et 2 fois la valeur de l'erreur cordale du système de FAO. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 361 13 Cycles : fonctions spéciales | TOLERANCE (cycle 32, DIN/ISO : G62) Attention lors de la programmation ! Ce cycle peut être exécuté en mode FUNCTION MODE MILL, FUNCTION MODE TURN et en mode FUNCTION DRESS. Si les valeurs de tolérance sont très faibles, la machine ne peut plus usiner le contour sans à-coups. Les "àcoups" ne sont pas dus à un manque de puissance de calcul de la commande mais sont dus au fait que la commande approche les transitions de contour avec une précision quasi parfaite, imposant alors parfois une chute drastique de la vitesse de déplacement. Le cycle 32 est actif avec DEF, ce qui signifie qu'il est actif dès qu'il est défini dans le programme CN. La valeur de tolérance T indiquée est interprétée par la commande en millimètres dans un programme MM, et en pouces dans un programme Inch. Si vous importez un programme CN avec le cycle 32 qui ne possède comme paramètre de cycle que la valeur de tolérance T, la commande attribue au besoin la valeur 0 aux deux autres paramètres. D'une manière générale, pour les mouvements circulaires, plus la tolérance est grande, plus le diamètre du cercle est petit, sauf si le filtre HSC est activé sur votre machine (paramétrages du constructeur de la machine). Si le cycle 32 est actif, la commande affiche, dans l'affichage d'état supplémentaire de l'onglet CYC, les paramètres définis au cycle 32. Annulation La commande réinitialise le cycle 32 lorsque vous redéfinissez le cycle 32 et validez la question de dialogue Tolérance avec NO ENT, vous utilisez la touche PGM MGT pour sélectionner un nouveau programme CN Après avoir annulé le cycle 32, la TNC active à nouveau la tolérance prédéfinie au paramètre machine. 362 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales | TOLERANCE (cycle 32, DIN/ISO : G62) Remarque dans le cas d'opérations d'usinage simultanées à 5 axes ! Pour les programmes CN d’usinage à cinq axes simultanés avec fraise boule, privilégier la programmation par rapport au centre de la boule. La constance des données CN s'en trouve alors généralement améliorée. Pour garantir une avance encore plus constante au niveau du point d'origine de l'outil (TCP), vous pouvez également définir une tolérance TA plus élevée pour l'axe rotatif (par ex. entre 1° et 3°), dans le cycle 32 (G62) Dans le cas de programmes CN pour des usinages à 5 axes simultanés avec des fraises toroïdales ou hémisphériques, il est recommandé d'opter pour une tolérance plus faible pour l'axe rotatif s'il s'agit d'une émission CN sur le pôle sud de la bille. Une valeur courante est par exemple 0.1°. L'endommagement maximal admissible du contour est un facteur de tolérance déterminant pour l'axe rotatif. Cet écart du suivi de contour dépend de l'éventuelle inclinaison de l'outil, du rayon d'outil et de la profondeur d'attaque de l'outil. Avec un taillage d'engrenage en cinq axes avec une fraise deux tailles, vous pouvez vous baser sur la longueur d'attaque de la fraise L et sur la tolérance contour autorisée TA pour calculer directement l'écart maximal du contour possible : T ~ K x L x TA K = 0.0175 [1/°] Exemple : L = 10 mm, TA = 0.1°: T = 0.0175 mm Exemple de formule pour une fraise toroïdale : Si vous travaillez avec une fraise toroïdale, la tolérance angulaire est d'une grande importance. Tw : tolérance angulaire en degrés π : nombre Pi R: rayon moyen du tore, en mm T32 : tolérance d'usinage, en mm HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 363 13 Cycles : fonctions spéciales | TOLERANCE (cycle 32, DIN/ISO : G62) Paramètres du cycle Tolérance T : écart admissible par rapport au contour en mm (ou en pouces pour les programmes en inch). Plage de programmation : 0,0000 à 10,0000 >0 : Si vous programmez une valeur supérieure à zéro, la commande utiliser l'écart maximal admissible que vous avez indiqué. 0 : Si vous programmez une valeur égale à zéro ou si vous appuyez sur la touche NO ENT, la commande utilisera une valeur configurée par le constructeur de la machine. MODE HSC, finition=0, ébauche=1 : activer le filtre Valeur 0 : Fraisage avec une plus grande précision de contour. La commande utilise des paramètres de filtre de finition définis en interne. Valeur 1 : Fraisage avec une vitesse d'avance plus élevée. La commande utilise des paramètres de filtre d'ébauche définis en interne. Tolérance pour axes rotatifs TA : écart de position admissible des axes rotatifs en degrés avec M128 active (FONCTION TCPM). En cas de mouvements multi-axes, la commande réduit toujours l'avance de contournage de manière à ce que l'axe le plus lent se déplace avec son avance maximale. En règle générale, les axes rotatifs sont nettement plus lents que les axes linéaires. En programmant une tolérance large (par ex. 10°), il est possible de réduire considérablement le temps d'usinage des programmes CN multiaxes, car la commande doit alors toujours amener précisément l'axe rotatif (ou les axes rotatifs) à la position nominale prédéfinie. L’orientation de l’outil (position de l’axe rotatif par rapport à la surface de la pièce) est adaptée. La position au Tool Center Point (TCP) est automatiquement corrigée. Par exemple, cela n’a aucune influence négative sur le contour si celui-ci est usiné avec une fraise boule qui a été étalonnée au centre et qui est programmée en tenant compte de la trajectoire du centre de l'outil. Plage de programmation : 0,0000 à 10,0000 >0 : Si vous programmez une valeur supérieure à zéro, la commande utiliser l'écart maximal admissible que vous avez indiqué. .0 : Si vous programmez une valeur égale à zéro ou si vous appuyez sur la touche NO ENT, la commande utilisera une valeur configurée par le constructeur de la machine. 364 Exemple 95 CYCL DEF 32.0 TOLERANCE 96 CYCL DEF 32.1 T0.05 97 CYCL DEF 32.2 HSC-MODE:1 TA5 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales | GRAVURE (cycle 225, DIN/ISO : G225) 13.6 GRAVURE (cycle 225, DIN/ISO : G225) Mode opératoire du cycle Ce cycle permet de graver des textes sur une face plane de la pièce. Les textes peuvent être gravés sur une droite ou un arc de cercle. 1 La commande positionne l'outil dans le plan d'usinage, au point de départ du premier caractère. 2 L'outil plonge verticalement à la profondeur de gravure et fraise le caractère. Les mouvements de retrait requis entre chaque caractère sont effectués à la distance d'approche. Une fois le caractère gravé, l'outil se trouve au-dessus de la surface, à la distance d'approche. 3 Cette procédure est répétée pour tous les caractères à graver. 4 Pour finir, la commande positionne l'outil au saut de bride. Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Le signe du paramètre de cycle Profondeur détermine le sens de l’usinage. Si vous programmez une profondeur égale à 0, la commande n'exécutera pas le cycle. Le texte à graver peut être défini au moyen d'une variable string (QS). Avec le paramètre Q374, il est possible d'influencer la position de rotation des lettres. Si Q374=0° à 180° : l'écriture se fait de gauche à droite. Si Q374 est supérieur à 180° : le sens de l'écriture est inversé. Le point de départ d'une gravure en trajectoire circulaire se trouve en bas à gauche, au-dessus du premier caractère à graver. (avec les anciennes versions de logiciel, il arrivait qu'un pré-positionnement au centre du cercle soit effectué.) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 365 13 Cycles : fonctions spéciales | GRAVURE (cycle 225, DIN/ISO : G225) Paramètres du cycle QS500 Texte de gravage? : le texte à graver se trouve entre guillemets. Caractères autorisés pour la programmation : 255 Affectation d'une variable string avec la touche Q du pavé numérique. La touche Q du clavier alphabétique sert à une saisie de texte normale. voir "Graver des variables du système", Page 369 Q513 Hauteur des caractères? (en absolu) : hauteur des caractères à graver, en mm. Plage de programmation : 0 à 99999,9999 Q514 Fact. d'espacement des caract.? : la police d'écriture utilisée est une police dite "proportionnelle". Chaque caractère a donc sa propre largeur que la commande grave en fonction de la définition de Q514=0. Si Q514 est différent de 0, la commande applique un facteur d'échelle sur l'écart entre les caractères. Plage de programmation : 0 à 9,9999 Q515 Police? : par défaut, c'est la police d'écriture DeJaVuSans qui est utilisée. Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la surface de la pièce Plage de saisie 0 à 99999,9999, sinon PREDEF 366 Q513 Q516 = 0 Q516 = 1 Q201 Profondeur? (en incrémental) : distance entre la surface de la pièce et le fond de la gravure. Q206 Avance plongee en profondeur? : vitesse de déplacement de l'outil lors de la plongée, en mm/min Plage d’introduction 0 à 99999,999 ou FAUTO, FU a = x * Q514 Q516 = 2 Q516 Texte sur droite/cercle (0/1)? : graver un texte le long d'une droite : valeur = 0 graver un texte sur un arc de cercle : valeur = 1 graver un texte en arc de cercle, en périphérie (pas nécessairement lisible par en dessous) : valeur = 2 Q374 Position angulaire? : angle au centre si le texte doit être aligné sur le cercle. Angle de gravure si le texte est droit. Plage de programmation : -360,0000° à 360,0000° Q517 Rayon pour texte sur cercle? (en absolu) : rayon de l'arc de cercle sur lequel la commande doit aligner le texte, en mm. Plage de programmation : 0 à 99999,9999 Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ a x Exemple 62 CYCL DEF 225 GRAVAGE QS500=“A“ ;TEXTE GRAVAGE Q513=10 ;HAUTEUR CARACTERES Q514=0 ;FACTEUR ECART Q515=0 ;POLICE Q515=0 ;DISPOSITION TEXTE Q374=0 ;POSITION ANGULAIRE Q517=0 ;RAYON CERCLE Q207=750 ;AVANCE FRAISAGE Q201=-0.5 ;PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q200=2 ;DISTANCE D'APPROCHE Q203=+20 ;COORD. SURFACE PIECE Q204=50 ;SAUT DE BRIDE Q367=+0 ;POSITION DU TEXTE Q574=+0 ;LONGUEUR DU TEXTE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales | GRAVURE (cycle 225, DIN/ISO : G225) Q203 Coordonnées surface pièce? (en absolu) : coordonnée de la surface de la pièce. Plage de programmation : -99999,9999 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de saisie 0 à 99999,9999, sinon PREDEF Q367 Réf. pr la pos. du texte (0-6)? Indiquez ici la référence pour la position du texte. Suivant si le texte est gravé en cercle ou en ligne droite (paramètre Q516), les données sont les suivantes : Gravure en trajectoire circulaire ; la position du texte est la suivante : 0 = au centre du cercle 1 = en bas, à gauche 2 = en bas, au centre 3 = en bas, à droite 4 = en haut, à droite 5 = en haut, au centre 6 = en haut, à gauche Gravure en ligne droite ; la position du texte est la suivante : 0 = en bas, à gauche 1 = en bas, à gauche 2 = en bas, au centre 3 = en bas, à droite 4 = en haut, à droite 5 = en haut, au centre 6 = en haut, à gauche Q574 Longueur maximale du texte? (mm/inch) : indiquez ici la longueur maximale de texte. La commande tient également compte du paramètre Q513 "Hauteur de caractères". Si Q513 = 0, la CN grave la longueur du texte exactement comme vous l'avez indiqué au paramètre Q574. La hauteur de caractères est mise à l'échelle en conséquence. Si Q513 est supérieur à zéro, la CN vérifie que la longueur effective du texte ne dépasse pas la longueur maximale définie à Q574. Si c'est le cas, la commande émet un message d'erreur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 367 13 Cycles : fonctions spéciales | GRAVURE (cycle 225, DIN/ISO : G225) Caractères autorisés Outre les minuscules, majuscules et chiffres, les caractères spéciaux suivants sont possibles : ! # $ % & ‘ ( ) * + , - . / : ; < = > ? @ [ \ ] _ ß CE Les caractères spéciaux % et \ sont utilisés par la commande pour des fonctions spéciales. Si vous voulez graver ces caractères, alors vous devrez les renseigner deux fois dans le texte à graver, par ex. %%. Pour graver des trémas, un ß, des symboles de type ø ou @ ou encore le sigle CE, vous devez faire précéder le caractère/symbole/ signe concerné du signe % : Signe Introduction ä %ae ö %oe ü %ue Ä %AE Ö %OE Ü %UE ß %ss ø %D @ %at CE %CE Caractères non imprimables En plus du texte, il est également possible de définir des caractères non imprimables à des fins de formatage. Les caractères non imprimables sont à indiquer avec le caractère spécial \. Il existe les possibilités suivantes : Signe Introduction Saut de ligne \n Tabulation horizontale (la portée de la tabulation est limitée par défaut à 8 caractères) \t Tabulation verticale (la portée de la tabulation est limitée par défaut à une ligne) \v 368 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales | GRAVURE (cycle 225, DIN/ISO : G225) Graver des variables du système En plus des caractères classiques/fixes, il est possible de graver le contenu de certaines variables système. Les variables système doivent être introduites par le signe %. Vous avez la possibilité de graver la date et l'heure actuelles. Introduisez pour cela %time<x>. <x> définit le format, par ex. 08 pour JJ.MM.AAAA. (identique à la fonction SYSSTR ID321) Notez que les formats de dates 1 à 9 que vous indiquez doivent commencer par un 0, par ex. %Time08. Caractères Programmation JJ.MM.AAAA hh:mm:ss %time00 J.MM.AAAA h:mm:ss %time01 J.MM.AAAA h:mm %time02 J.MM.AA h:mm %time03 AAAA-MM-JJ hh:mm:ss %time04 AAAA-MM-JJ hh:mm %time05 AAAA-MM-JJ h:mm %time06 AA-MM-JJ h:mm %time07 JJ.MM.AAAA %time08 J.MM.AAAA %time09 J.MM.AA %time10 AAAA-MM-JJ %time11 AA-MM-JJ %time12 hh:mm:ss %time13 h:mm:ss %time14 h:mm %time15 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 369 13 Cycles : fonctions spéciales | GRAVURE (cycle 225, DIN/ISO : G225) Graver le nom et le chemin d'un programme CN Vous avez la possibilité de graver le nom ou le chemin d'un programme CN avec le cycle 225. Définissez le cycle 225 comme à votre habitude. Le texte à graver doit être introduit par %. Il est possible de graver le nom ou le chemin d'un programme CN, actif ou appelé. Pour cela, vous devez définir %main<x> ou %prog<x>. (identique à la fonction ID10010 NR1/2) Il existe les possibilités suivantes : Signe Valeur Gravure Chemin complet du fichier du programme CN actif %main0 par ex. TNC:\MILL.h Chemin du répertoire du programme actif %main1 par ex. TNC:\ Nom du programme CN actif %main2 par ex. MILL Type de fichier du programme CN actif %main3 par ex. .H Chemin complet du fichier du programme CN appelé %prog0 par ex. TNC:\HOUSE.h Chemin du répertoire du programme CN appelé %prog1 par ex. TNC:\ Nom du programme CN appelé %prog2 par ex. HOUSE Type de fichier du programme CN appelé %prog3 par ex. .H Graver l’état du compteur Avec le cycle 225, vous pouvez graver l’état actuel du compte que vous trouverez dans le menu MOD. Pour cela, vous programmez le cycle 225 comme à votre habitude et vous entrez p. ex. le texte à graver suivant : %count2. Le chiffre qui suit %count indique le nombre de caractères que doit graver la commande. Il est possible de graver jusqu'à neuf caractères maximum. Exemple : Si vous programmez %count9 dans le cycle et que le compteur actuel est à 3, alors la commande gravera 000000003. En mode Test de programme, la commande simule uniquement l'état du compteur que vous avez directement renseigné dans le programme CN. Elle ne tient pas compte de l'état du compteur dans le menu MOD. Dans les modes PAS A PAS et EN CONT., la CN tient compte du statut du compteur dans le menu MOD. 370 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles : fonctions spéciales | FRAISAGE TRANSVERSAL (cycle 232, DIN/ISO : G232, option de logiciel 19) 13.7 FRAISAGE TRANSVERSAL (cycle 232, DIN/ISO : G232, option de logiciel 19) Mode opératoire du cycle Le cycle 232 permet d'usiner une surface plane en plusieurs passes en tenant compte d'une surépaisseur de finition. Pour cela, vous disposez de trois stratégies d'usinage : Stratégie Q389=0 : usinage en méandres, passe latérale à l'extérieur de la surface à usiner Stratégie Q389=1 : Usinage en méandres, passe latérale, au bord de la surface à usiner Stratégie Q389=2 : usinage ligne à ligne, retrait et passe latérale avec l'avance de positionnement 1 La commande déplace l'outil en avance rapide FMAX pour l'amener de se position actuelle au point de départ 1, selon la logique de positionnement : si la position actuelle sur l'axe de broche est supérieure au saut de bride, alors la commande amène l'outil d'abord dans le plan d'usinage, puis dans l'axe de broche ou d'abord au saut de bride, puis dans le plan d'usinage. Le point de départ dans le plan d'usinage est décalé de la valeur du rayon de l'outil et de la valeur de la distance d'approche latérale, à côté de la pièce. 2 L'outil est ensuite amené à la première profondeur de passe calculée par la commande, sur l'axe de la broche, avec l'avance de positionnement. Stratégie Q389=0 3 L'outil se déplace ensuite au point final 2, avec l'avance de fraisage programmée. Le point final se trouve à l'extérieur de la surface. La commande le calcule à partir du point de départ programmé, de la longueur programmée, de la distance d'approche latérale programmée et du rayon d'outil. 4 La commande décale l'outil en transversale avec l'avance de prépositionnement pour l'amener au point de départ de la ligne suivante ; la commande calcule ce décalage à partir de la largeur programmée, du rayon de l'outil et du facteur de recouvrement de trajectoire maximal. 5 L'outil revient ensuite vers le point de départ 1 6 Le processus est répété jusqu'à ce que la surface programmée soit intégralement usinée. A la fin de la dernière trajectoire, la passe est assurée à la profondeur d'usinage suivante. 7 Pour minimiser les courses inutiles, la surface est ensuite usinée dans l'ordre chronologique inverse. 8 Le processus est répété jusqu’à ce que toutes les passes soient exécutées. Lors de la dernière passe, l'outil n'exécute que l'usinage de la surépaisseur de finition, selon l'avance de finition. 9 A la fin, la commande retire l'outil au saut de bride avec l'avance FMAX. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 371 13 13 Cycles : fonctions spéciales | FRAISAGE TRANSVERSAL (cycle 232, DIN/ISO : G232, option de logiciel 19) Stratégie Q389=1 3 L'outil se déplace ensuite au point final 2 selon l'avance de fraisage programmée. Le point final se trouve en bordure de la surface. La commande le calcule à partir du point de départ programmé, de la longueur programmée et du rayon de l'outil. 4 La commande décale l'outil en transversale avec l'avance de prépositionnement pour l'amener au point de départ de la ligne suivante ; la commande calcule ce décalage à partir de la largeur programmée, du rayon de l'outil et du facteur de recouvrement de trajectoire maximal. 5 L'outil revient ensuite vers le point de départ 1. Le décalage à la ligne suivante s'effectue de nouveau en bordure de la pièce. 6 Le processus est répété jusqu'à ce que la surface programmée soit intégralement usinée. A la fin de la dernière trajectoire, la passe est assurée à la profondeur d'usinage suivante. 7 Pour minimiser les courses inutiles, la surface est ensuite usinée dans l'ordre chronologique inverse. 8 Cette procédure est répétée jusqu’à ce que toutes les passes soient exécutées. Lors de la dernière passe, l'outil exécute l'usinage de la surépaisseur de finition, avec l'avance de finition. 9 A la fin, la commande retire l'outil au saut de bride avec l'avance FMAX. Stratégie Q389=2 3 L'outil se déplace ensuite au point final 2 selon l'avance de fraisage programmée. Le point final se trouve en dehors de la surface. La commande le calcule à partir du point de départ programmé, de la longueur programmée, de la distance d'approche latérale programmée et du rayon d'outil. 4 La commande déplace l'outil dans l'axe de broche pour l'amener à la distance d'approche, au-dessus de la profondeur de passe actuelle, puis le ramène directement au point de départ de la ligne suivante, avec l'avance de pré-positionnement. La commande calcule le décalage à partir de la largeur programmée, du rayon d'outil et du facteur de recouvrement de trajectoire maximal. 5 Ensuite, l'outil se déplace à nouveau à la profondeur de passe actuelle, puis à nouveau en direction du point final 2. 6 Le processus est répété jusqu'à ce que la surface programmée soit intégralement usinée. A la fin de la dernière trajectoire, la passe est assurée à la profondeur d'usinage suivante. 7 Pour minimiser les courses inutiles, la surface est ensuite usinée dans l'ordre chronologique inverse. 8 Le processus est répété jusqu’à ce que toutes les passes soient exécutées. Lors de la dernière passe, l'outil n'exécute que l'usinage de la surépaisseur de finition, selon l'avance de finition. 9 A la fin, la commande retire l'outil au saut de bride avec l'avance FMAX. 372 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles : fonctions spéciales | FRAISAGE TRANSVERSAL (cycle 232, DIN/ISO : G232, option de logiciel 19) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Définir un SAUT DE BRIDE Q204 de manière à ce qu'aucune collision ne puisse se produire avec la pièce ou les moyens de serrage. Si vous avez paramétré la même valeur pour Q227 PT INITIAL 3EME AXE et Q386 POINT FINAL 3EME AXE, la commande ne lancera pas le cycle (profondeur programmée = 0). Programmez une valeur Q227 supérieure à la valeur de Q386. Sinon, la commande émet un message d'erreur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 373 13 13 Cycles : fonctions spéciales | FRAISAGE TRANSVERSAL (cycle 232, DIN/ISO : G232, option de logiciel 19) Paramètres du cycle Q389 Stratégie d'usinage (0/1/2)? : vous définissez ici comment la commande doit usiner la surface : 0 : usinage en méandres, passe latérale en dehors de la surface à usiner, avec l'avance de positionnement 1 : usinage en méandre, passe latérale en bordure de la surface à usiner, avec l'avance de fraisage 2 : usinage ligne à ligne, retrait et passe latérale, avec l'avance de positionnement. Q225 Point initial 1er axe? (en absolu) : Coordonnée du point initial de la surface à usiner dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q226 Point initial 2ème axe? (en absolu) : coordonnée du point de départ de la surface à usiner sur l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q227 Point initial 3ème axe? (en absolu) : coordonnée de la surface de la pièce à partir de laquelle les passes sont calculées Plage de programmation : -99999,9999 à 99999,9999 Q386 Point final sur 3ème axe? (en absolu) : coordonnée sur l'axe de la broche à laquelle la surface doit être fraisée en transversal. Plage de programmation : -99999,9999 à 99999,9999 Q218 Longueur premier côté? (en incrémental) : longueur de la surface à usiner dans l'axe principal du plan d'usinage. Le signe permet de définir la direction de la première trajectoire de fraisage par rapport au point initial du 1er axe. Plage de programmation : -99999,9999 à 99999,9999 Q219 Longueur second côté? (en incrémental) : longueur de la surface à usiner dans l'axe auxiliaire du plan d'usinage. Vous pouvez définir le sens de la première passe transversale par rapport au PT INITIAL 2EME AXE en faisant précéder la valeur d'un signe. Plage de programmation : -99999,9999 à 99999,9999 Q202 Profondeur de plongée max.? (en incrémental) : cote maximale de chaque passe d'outil. La commande calcule la profondeur de passe réelle à partir de la différence entre le point final et le point de départ dans l'axe d'outil – en tenant compte de la surépaisseur de finition – et ce, de manière à ce que l'usinage soit exécuté avec des profondeurs de passes de même valeur. Plage de programmation : 0 à 99999,9999 Q369 Surep. finition en profondeur? (en incrémental) : valeur de la dernière passe Plage de programmation : 0 à 99999,9999 374 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles : fonctions spéciales | FRAISAGE TRANSVERSAL (cycle 232, DIN/ISO : G232, option de logiciel 19) Q370 Facteur de recouvrement max.? : passe latérale k maximale. La commande calcule la passe latérale effective à partir du saut de bride (Q219) et du rayon d'outil, de manière à ce que l'usinage soit effectué avec une passe latérale constante. Si vous avez entré un rayon R2 dans le tableau d'outils (par ex., un rayon de plaquette pour une tête de fraisage), la commande diminuera la passe latérale en conséquence. Plage de programmation : 0,1 à 1,9999 Q207 Avance fraisage? : vitesse de déplacement de l'outil lors du fraisage, en mm/min. Plage d’introduction 0 à 99999,999 ou FAUTO, FU, FZ Q385 Avance de finition? : vitesse de déplacement de l'outil lors de la dernière passe de fraisage, en mm/min. Plage de programmation : 0 à 99999,9999, sinon FAUTO, FU, FZ Q253 Avance de pré-positionnement? : vitesse de déplacement de l'outil à l'approche de la position de départ et lors du déplacement à la ligne suivante, en mm/min ; si le déplacement s'effectue en transversal dans la matière (Q389=1), la commande déplacera l'outil avec l'avance de fraisage Q207. Plage de programmation : 0 à 99999,9999, sinon FMAX, FAUTO Exemple 71 CYCL DEF 232 FRAISAGE TRANSVERSAL Q389=2 ;STRATEGIE Q225=+10 ;PT INITIAL 1ER AXE Q226=+12 ;PT INITIAL 2EME AXE Q227=+2.5 ;PT INITIAL 3EME AXE Q386=-3 ;POINT FINAL 3EME AXE Q218=150 ;1ER COTE Q219=75 ;2EME COTE Q202=2 ;PROF. PLONGEE MAX. Q369=0.5 ;SUREP. DE PROFONDEUR Q370=1 ;RECOUVREMENT MAX. Q207=500 ;AVANCE FRAISAGE Q385=800 ;AVANCE DE FINITION Q253=2000 ;AVANCE PRE-POSIT. Q200=2 ;DISTANCE D'APPROCHE Q357=2 ;DIST. APPR. LATERALE Q204=2 ;SAUT DE BRIDE Q200 Distance d'approche? (en incrémental) : distance entre la pointe de l'outil et la position de départ dans l'axe d'outil. Si vous fraisez avec la stratégie d'usinageQ389=2, la commande amènera l'outil à la distance d'approche, au-dessus de la profondeur de passe actuelle, avant pour aborder le point de départ de la ligne suivante. Plage de programmation : 0 à 99999,9999 Q357 Distance d'approche latérale? (en incrémental) Le paramètre Q357 a un effet dans les situations suivantes : Approche de la première profondeur de passe : Q357 correspond à la distance latérale de l'outil par rapport à la pièce Ebauche avec les stratégies de fraisage Q389=0-3: La surface à usiner est agrandie de la valeur de Q357 au paramètre Q350 SENS DE FRAISAGE, dans la mesure où il n'y a pas de limitation dans cette direction Finition latérale : Les trajectoires sont rallongées de la valeur de Q357 au paramètre Q350 SENS DE FRAISAGE. Plage de programmation : de 0 à 99999,9999 Q204 Saut de bride (en incrémental) : coordonnée de l'axe de la broche à laquelle aucune collision ne peut se produire entre l'outil et la pièce (moyen de serrage). Plage de saisie 0 à 99999,9999, sinon PREDEF HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 375 13 13 Cycles : fonctions spéciales | MESURE ETAT MACHINE (cycle 238, DIN/ISO: G238, option 155) 13.8 MESURE ETAT MACHINE (cycle 238, DIN/ISO: G238, option 155) Application Consultez le manuel de votre machine ! La machine et la commande doivent avoir été préparées par le constructeur de la machine. L'option 155 (Component Monitoring) est nécessaire pour le cycle 238. Les composants de la machine soumis à une charge (par ex. guidage, vis à billes, etc.) finissent par s'user au fil du temps, ce qui finit par nuire à la qualité de l'asservissement des axes, et donc à la qualité de l'usinage. Avec Component Monitoring (option 155) et le cycle 238, la CN se trouve capable de mesurer l'état actuel de la machine. Elle peut ainsi s'appuyer sur des données telles que le vieillissement et l'usure pour mesurer des modifications par rapport à l'état de livraison. Les mesures sont sauvegardées dans un fichier texte lisible du constructeur de la machine. Celui-ci peut alors lire, analyser ces données et réagir en instaurant une maintenance préventive, dans le but d'éviter des arrêts machine imprévus. Le constructeur de la machine peut définir des valeurs mesurées comme seuils d'avertissement et d'erreur, et éventuellement aussi (en option) définir des types de réaction aux erreurs. Déroulement du cycle Paramètre Q570=0 1 La commande exécute des mouvements le long des axes de la machine. 2 Les potentiomètres d'avance, d'avance rapide et de broche agissent. C'est le constructeur de votre machine qui définit le déroulement précis des mouvements des axes. Paramètre Q570=1 1 La commande exécute des mouvements le long des axes de la machine. 2 Les potentiomètres d'avance, d'avance rapide et de broche n'ont pas d'effet. 3 Dans l'onglet d'état MON Detail, vous pouvez sélectionner les affichages que vous souhaitez voir. 4 Ce diagramme vous permet de suivre à quel niveau de proximité des seuils d'avertissement et d'erreur se trouvent les composants. Informations complémentaires : Configuration, test et exécution de programmes CN C'est le constructeur de votre machine qui définit le déroulement précis des mouvements des axes. 376 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales | MESURE ETAT MACHINE (cycle 238, DIN/ISO: G238, option 155) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Le cycle est capable d'exécuter des mouvements complets sur plusieurs axes en avance rapide. Si la valeur 1 est programmée au paramètre de cycle Q570, les potentiomètres d'avance, d'avance rapide et éventuellement de broche n'ont aucun effet. Il reste toutefois possible d'interrompre un mouvement par une rotation du potentiomètre d'avance sur zéro. Il existe un risque de collision ! Testez le cycle en mode Test Q570=0 avant l'enregistrement des données de mesure Informez-vous auprès du constructeur de votre machine sur le type et le nombre de mouvements du cycle 238 avant de l'utiliser ! Ce cycle peut être exécuté en mode FUNCTION MODE MILL, FUNCTION MODE TURN et en mode FUNCTION DRESS. Le cycle 238 peut être appelé par un CALL. Assurez-vous que les axes ne sont pas serrés avant la mesure. Paramètres du cycle Q570 Mode (0=test/1=measure)? : vous définissez ici si la commande doit contrôler ou optimiser la cinématique active : 0: Aucune donnée de mesure n'est générée. Il est possible de réguler le mouvement des axes avec les potentiomètres d'avance et d'avance rapide 1: Aucune donnée de mesure n'est générée. Il n'est pas possible de réguler le mouvement des axes avec le potentiomètre d'avance et d'avance rapide. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 62 CYCL DEF 238 MEASURE MACHINE STATUS Q570=+0 ;MODE 377 13 Cycles : fonctions spéciales | CALCUL DE LA CHARGE (cycle 239, DIN/ISO : G239, option 143) 13.9 CALCUL DE LA CHARGE (cycle 239, DIN/ISO : G239, option 143) Déroulement du cycle Consultez le manuel de votre machine ! La machine et la commande doivent avoir été préparées par le constructeur de la machine. L'option LAC 143 (Load Adaptive Control).est nécessaire au cycle 239. Le comportement dynamique de votre machine peut varier si vous chargez la table avec des pièces de poids différents. Si le chargement varie, cela peut influencer les forces de friction, les accélérations, les couples d'arrêt et les adhérences des axes de la table. Avec l'option 143 LAC (Load Adaptive Control) et le cycle 239 DEFINIR CHARGE, la commande est capable de déterminer et d'adapter automatiquement l'inertie de masse actuelle de la charge, les forces de frottement actuelles et l'accélération maximale de l'axe, ou de réinitialiser les paramètres de pré-commande et d'asservissement. Vous êtes ainsi en mesure de réagir de manière optimale aux importantes variations de charge. La commande effectue une pesée afin d'estimer le poids auquel les axes sont soumis. Lors de cette pesée, les axes parcourent une certaine course - les mouvements précis sont à définir par le constructeur de la machine. Avant la pesée, les axes sont, au besoin, amenés à une position qui permet d'éviter tout risque de collision pendant la pesée. La position de sécurité est définie par le constructeur de la machine. Outre l'adaptation des paramètres d'asservissement, l'option LAC permet également d'adapter l'accélération maximale en fonction du poids. La dynamique peut ainsi être augmentée en conséquence en cas de faible charge, ce qui permet d'accroître la productivité. Paramètre Q570 = 0 1 Aucun mouvement physique des axes n'a lieu. 2 La commande réinitialise la fonction LAC. 3 Des paramètres de pré-commande, et éventuellement des paramètres d'asservissement, qui permettent de déplacer le ou les axe(s) sont actifs ; les paramètres activés avec Q570=0 sont indépendants de la charge. 4 Après avoir équipé la machine ou après avoir fini d'exécuter un programme CN, il peut s'avérer utile de modifier ces paramètres. 378 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales | CALCUL DE LA CHARGE (cycle 239, DIN/ISO : G239, option 143) Paramètre Q570 = 1 1 La commande effectue une pesée. Au besoin, elle déplace pour cela plusieurs axes. C'est la structure de la machine, ainsi que les entraînements des axes qui déterminent quels axes doivent être déplacés. 2 Le constructeur de la machine détermine quant à lui l'ampleur des mouvements des axes. 3 Les paramètres de pré-commande et les paramètres d'asservissement calculés par la commande dépendent de la charge actuelle. 4 La commande active les paramètres déterminés. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 379 13 Cycles : fonctions spéciales | CALCUL DE LA CHARGE (cycle 239, DIN/ISO : G239, option 143) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Le cycle est capable d'exécuter des mouvements complets sur plusieurs axes en avance rapide. Informez-vous auprès du constructeur de votre machine sur le type et le nombre de mouvements du cycle 239 avant de l'utiliser ! Au besoin, avant le début du cycle, la commande amène l'outil à une position de sécurité. Cette position est définie par le constructeur de la machine. Réglez le potentiomètre d'avance/d'avance rapide à 50 % minimum pour vous assurer que la charge puisse être correctement déterminée. Ce cycle peut être exécuté en mode FUNCTION MODE MILL, FUNCTION MODE TURN et en mode FUNCTION DRESS. Le cycle 239 est actif immédiatement après avoir été défini. Si vous effectuez une amorce de séquence et que la commande omet de lire le cycle 239, alors ce cycle est ignoré et aucune pesée n'est effectuée. Le cycle 239 détermine la charge des axes synchrones si ceux-ci disposent d'un seul système de mesure de position commun (couples maîtres-esclaves). Paramètres du cycle Q570 Charge(0=supprimer/1=calculer)? : vous définissez ici si la commande doit procéder à une pesée avec la fonction LAC (Load Adaptive Control) ou si les derniers paramètres de précommande et d'asservissement déterminés en fonction de la charge doivent être réinitialisés : 0 : si vous souhaitez réinitialiser la fonction LAC, les dernières valeurs définies par la commande sont réinitialisées. La commande travaille alors avec les paramètres de pré-commande et d'asservissement indépendants de la charge. 1 : si vous souhaitez effectuer une pesée ; la commande déplace alors les axes et détermine les paramètres de pré-commande et d'asservissement en fonction de la charge actuelle. Les valeurs déterminées sont immédiatement actives. Q570 = 0 Q570 = 1 Exemple 62 CYCL DEF 239 DEFINIR CHARGE Q570=+0 380 ;DEFINITION CHARGE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 13 Cycles : fonctions spéciales | FILETAGE (cycle 18, DIN/ISO: G86, option 19) 13.10 FILETAGE (cycle 18, DIN/ISO: G86, option 19) Déroulement du cycle Avec le cycle 18 FILETAGE, l’outil se déplace avec asservissement de broche, de la position actuelle à la profondeur programmée selon la vitesse de rotation active. Un arrêt broche a lieu au fond du trou. Les mouvements d'approche et de sortie doivent être programmés séparément. Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Une collision peut survenir si vous ne programmez pas de pré-positionnement avant d’appeler le cycle 18. Le cycle 18 n’exécute ni mouvement d’approche, ni mouvement de sortie. Prépositionner l'outil avant de lancer le cycle Une fois le cycle appelé, l’outil se déplace de la position actuelle à la profondeur programmée. REMARQUE Attention, risque de collision ! Si la broche était activée avant le démarrage du cycle, le cycle 18 désactive la broche et fonctionne avec la broche immobilisée ! À la fin, le cycle 18 fait redémarrer la broche si elle était activée avant le lancement du cycle. Programmez un arrêt broche avant le départ du cycle ! (par ex. avec M5) Après que le cycle 18 ait été exécuté jusqu’à la fin, l’état de la broche avant le démarrage du cycle est rétabli. Si la broche était désactivée avant le démarrage du cycle, la commande la désactive de nouveau une fois le cycle 18 terminé. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 381 13 Cycles : fonctions spéciales | FILETAGE (cycle 18, DIN/ISO: G86, option 19) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Il est possible de procéder aux réglages suivants avec le paramètre CfgThreadSpindle (n°113600) : sourceOverride (n°113603) : potentiomètre de broche (potentiomètre de l'avance non actif) et potentiomètre d'avance (potentiomètre de la vitesse de rotation non actif) thrdWaitingTime (n°113601) : durée de la temporisation au fond du taraudage, après l'arrêt de la broche thrdPreSwitch (n°113602) : temporisation de la broche avant d'atteindre le fond du taraudage limitSpindleSpeed (n°113604) : limitation de la vitesse de rotation broche True: (la vitesse de rotation de la broche des petites profondeurs de filetage est limitée de manière à ce que la broche tourne à vitesse de rotation constante pendant env. 1/3 du temps) False: (aucune limitation) Le potentiomètre de la vitesse de broche est inactif. Programmez un arrêt broche avant de démarrer le cycle ! (par ex. avec M5). La commande active alors automatiquement la broche au démarrage du cycle et la désactive de nouveau automatiquement en fin de cycle. Le signe du paramètre de cycle Profondeur de filetage détermine le sens de l’usinage. Paramètres du cycle prof. perçage (en incrémental) : vous entrez la profondeur de filetage à partir de la position actuelle. Plage de programmation : -99999 ... +99999 Pas de filetage : vous entrez le pas de filetage. Le signe algébrique ici programmé définit s’il s'agit d’un filet à gauche ou d’un filet à droite : + = filet à droite (M3 pour une profondeur de perçage négative) - = filet à gauche (M4 pour une profondeur de perçage négative) Exemple 25 CYCL DEF 18.0 FILETAGE 26 CYCL DEF 18.1 PROFONDEUR = -20 27 CYCL DEF 18.2 PAS = +1 382 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 14 Travail avec les cycles palpeurs 14 Travail avec les cycles palpeurs | Généralités sur les cycles palpeurs 14.1 Généralités sur les cycles palpeurs La CN doit avoir été préparée par le constructeur de la machine pour l'utilisation du palpeur 3D. HEIDENHAIN ne garantit le fonctionnement correct des cycles de palpage qu'avec les palpeurs HEIDENHAIN. Mode opératoire Lorsque la commande exécute un cycle palpeur, le palpeur 3D se déplace parallèlement aux axes pour atteindre la pièce (même si la rotation de base est activée et même en plan incliné). Le constructeur de la machine définit l'avance de palpage dans un paramètre machine. Informations complémentaires : "Avant de travailler avec les cycles palpeurs!", Page 387 Lorsque la tige de palpage touche la pièce, le palpeur 3D transmet un signal à la commande qui mémorise alors les coordonnées de la position palpée le palpeur 3D s'arrête et il retourne à la position de départ de l'opération de palpage, en avance rapide. Si la tige de palpage n'est pas déviée sur la course définie, la commande délivre un message d'erreur en conséquence (course : DIST dans le tableau de palpeurs). Tenir compte de la rotation de base en mode Manuel Lors de la procédure de palpage, la commande tient compte d'une rotation de base active et amène le palpeur en oblique jusqu'à la pièce. Cycles palpeurs des modes Manuel et Manivelle électronique Dans les modes de fonctionnement Mode Manuel et Manivelle électronique, la commande propose des cycles de palpage que vous pouvez utiliser pour : étalonner le palpeur compenser du désalignement de la pièce initialiser des points d'origine 384 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 14 Travail avec les cycles palpeurs | Généralités sur les cycles palpeurs Des cycles palpeurs en mode automatique Outre les cycles palpeurs que vous utilisez en Mode Manuel et en mode Manivelle électronique, la CN propose également un grand nombre de cycles à utiliser en mode Automatique dans des applications les plus diverses : Etalonnage du palpeur à commutation Compensation du désalignement de la pièce Initialiser les points de référence Contrôle automatique des pièces Etalonnage automatique des outils Vous programmez les cycles palpeurs en mode Programmation à l'aide de la touche TOUCH PROBE. Vous utilisez les cycles palpeurs à partir du numéro 400 comme les nouveaux cycles d'usinage, paramètres Q comme paramètres de transfert. Les paramètres que la commande utilise dans différents cycles et qui ont les mêmes fonctions portent toujours les mêmes numéros : ainsi par exemple, Q260 correspond toujours à la hauteur de sécurité, Q261 toujours à la hauteur de mesure, etc. Pour simplifier la programmation, la commande affiche un écran d'aide pendant la définition du cycle. L'écran d'aide affiche le paramètre que vous devez introduire (voir fig. de droite). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 385 14 Travail avec les cycles palpeurs | Généralités sur les cycles palpeurs Définir un cycle palpeur en mode Programmation : Procédez comme suit : Appuyer sur la touche TOUCH PROBE Séquences CN 5 TCH PROBE 410 PT ORIGINE RECTANGLE INT. Sélectionner le groupe de cycles de palpage, par ex. définition du point d'origine Les cycles destinés à l'étalonnage automatique d'outil ne sont disponibles que si votre machine a été préparée pour assumer ces fonctions. Sélectionner un cycle, par ex. définition du point d'origine au centre de la poche La commande ouvre un dialogue et réclame toutes les valeurs de programmation requises ; en même temps, la commande affiche, dans la moitié droite de l'écran, un graphique dans lequel le paramètre renseigner est en surbrillance. Entrez toutes les paramètres requis par la commande Valider la programmation avec la touche ENT La CN quitte le dialogue une fois toutes les données requises programmées. Softkey 386 Groupe de cycles de mesure Page Cycles pour déterminer automatiquement et compenser le désalignement d'une pièce 394 Cycles de définition automatique du point d'origine 446 Cycles pour le contrôle automatique de pièces 508 Cycles spéciaux 556 Etalonnage avec TS 564 Cinématique 581 Cycles pour la mesure automatique d'outils (activés par le constructeur de machines) 616 Q321=+50 ;CENTRE 1ER AXE Q322=+50 ;CENTRE 2EME AXE Q323=60 ;1ER COTE Q324=20 ;2EME COTE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q305=10 ;NO. DANS TABLEAU Q331=+0 ;POINT ORIGINE Q332=+0 ;POINT ORIGINE Q303=+1 ;TRANSF. VAL. MESURE Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. Q384=+0 ;3.COO.POUR AXE PALP. Q333=+0 ;POINT ORIGINE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 14 Travail avec les cycles palpeurs | Avant de travailler avec les cycles palpeurs! 14.2 Avant de travailler avec les cycles palpeurs! Pour couvrir le plus grand nombre possible de types d'opérations de mesure, vous pouvez configurer le comportement de base de tous les cycles palpeurs via des paramètres machine : Course de déplacement maximale au point de palpage : DIST dans le tableau de palpeurs Si la tige de palpage n'est pas déviée sur la course DIST définie, la commande émet un message d'erreur. Distance d'approche jusqu’au point de palpage : SET_UP dans le tableau de palpeurs Avec SET_UP, vous définissez la distance de pré-positionnement du palpeur par rapport au point de palpage défini - ou calculé par le cycle. Plus la valeur que vous introduisez est faible, plus vous devez définir les positions de palpage avec précision. Dans de nombreux cycles de palpage, vous pouvez définir une autre distance d'approche qui agit en plus de SET_UP. Orienter le palpeur infrarouge dans le sens de palpage programmé : TRACK dans le tableau palpeurs Pour une meilleure précision de mesure, vous pouvez faire en sorte qu'un palpeur à infrarouge s'oriente dans le sens de palpage programmé avant chaque procédure de palpage en paramétrant TRACK = ON. De cette manière, la tige de palpage est toujours déviée dans la même direction. Si vous modifiez TRACK = ON, vous devrez ré-étalonner le palpeur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 387 14 Travail avec les cycles palpeurs | Avant de travailler avec les cycles palpeurs! Palpeur à commutation, avance de palpage : F dans le tableau de palpeurs Dans F, vous définissez l'avance avec laquelle la commande doit palper la pièce. F ne peut jamais avoir une valeur supérieure à la valeur définie au paramètre machine maxTouchFeed (n°122602). Le potentiomètre d'avance peut être actif dans les cycles de palpage. Les paramétrages requis sont définis par le constructeur de votre machine. (Le paramètre overrideForMeasure (n° 122604) doit être configuré en conséquence.) Palpeur à commutation, avance pour déplacements de positionnement : FMAX Dans FMAX, vous définissez l'avance avec laquelle la commande pré-positionne le palpeur et avec laquelle elle positionne le palpeur entre les deux points de mesure. Palpeur à commutation, avance rapide pour les déplacements de positionnement : F_PREPOS dans le tableau de palpeurs. Dans F_PREPOS, vous définissez si la commande doit positionner le palpeur avec l'avance FMAX définie ou avec l'avance rapide de la machine. Valeur d'introduction = FMAX_PROBE : positionnement avec l'avance définie dans FMAX Valeur = FMAX_MACHINE : Prépositionnement avec l'avance rapide de la machine 388 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 14 Travail avec les cycles palpeurs | Avant de travailler avec les cycles palpeurs! Exécuter les cycles palpeurs Tous les cycles palpeurs sont actifs avec DEF. Par conséquent, la commande exécute le cycle automatiquement lorsque la définition du cycle est exécutée dans le déroulement du programme. REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 1400 à 1499. Ne pas activer les cycles suivants avant d'avoir utilisé les cycles de palpage : cycle 8 IMAGE MIROIR, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE Réinitialiser au préalable les conversions de coordonnées Selon ce qui a été défini au paramètre machine optionnel chkTiltingAxes (n°204600), le palpage vérifie que la position des axes rotatifs concorde avec les angles d'inclinaison (3D-ROT). Si ce n'est pas le cas, la commande émet un message d'erreur. Vous pouvez exécuter les cycles palpeurs 408 à 419 ou 1400 à 1499 même avec une rotation de base activée. Veillez toutefois à ce que l'angle de la rotation de base ne varie plus si, après le cycle de mesure, vous travaillez avec le cycle 7 Décalage de point zéro. Les cycles palpeurs ayant un numéro compris entre 400 et 499 ou entre 1400 et 1499 prépositionnement le palpeur selon une logique de positionnement donnée : Si la coordonnée actuelle du pôle sud de la tige de palpage est inférieure à celle de la hauteur de sécurité (définie dans le cycle), alors la commande retire le palpeur, d'abord à la hauteur de sécurité sur l'axe de palpage, avant de le positionner au premier point de palpage dans le plan d'usinage. Si la coordonnée actuelle du pôle sud de la tige de palpage est supérieure à la coordonnée de la hauteur de sécurité, la commande positionne tout d'abord le palpeur au premier point de palpage dans le plan d'usinage, puis directement à la hauteur de mesure sur l'axe de palpage. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 389 14 Travail avec les cycles palpeurs | Tableau de palpeurs 14.3 Tableau de palpeurs Information générale Le tableau des palpeurs contient diverses données qui définissent le mode opératoire du palpeur lors du palpage. Si vous utilisez plusieurs palpeurs sur votre machine, vous pouvez enregistrer des données séparément pour chaque palpeur. Les données du tableau de palpeurs peuvent être également lues et éditées dans le gestionnaire d’outils étendu (option 93). Editer des tableaux de palpeurs Procédez comme suit : Appuyer sur la touche Mode Manuel Appuyer sur la softkey FONCTIONS PALPAGE La commande affiche d'autres softkeys. Appuyer sur la softkey TABLEAU PALPEUR Régler la softkey EDITER sur ON Avec les touches fléchées, sélectionner la configuration souhaitée Effectuer les modifications souhaitées Quitter le tableau de palpeurs : appuyer sur la softkey FIN 390 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 14 Travail avec les cycles palpeurs | Tableau de palpeurs Données du palpeur Abrév. Données Dialogue NO Numéro du palpeur : vous devez inscrire ce numéro dans le tableau d'outils (colonne : TP_NO) avec le numéro d'outil correspondant. -- TYPE Sélection du palpeur utilisé Sélection du palpeur? CAL_OF1 Décalage de l'axe de palpage par rapport à l'axe de broche dans l'axe principal Déport palp. dans axe principal? [mm] CAL_OF2 Décalage de l'axe du palpeur avec l’axe de broche dans l’axe secondaire Déport palp. dans axe auxil.? [mm] CAL_ANG Avant l'étalonnage ou le palpage, la commande oriente le palpeur suivant l'angle de rotation (si une orientation est possible). Angle broche pdt l'étalonnage? F Avance avec laquelle la commande palpe l'outil. F ne peut jamais avoir une valeur supérieure à la valeur définie au paramètre machine maxTouchFeed (n °122602). Avance de palpage? [mm/min] FMAX Avance avec laquelle le palpeur est pré-positionné et positionné entre les points de mesure Avance rapide dans cycle palpage? [mm/min] DIST Si la tige de palpage n'est pas déviée dans la limite de la valeur définie ici, la commande émet un message d'erreur Course de mesure max.? [mm] SET_UP Avec set_up, vous définissez la distance de pré-positionnement du palpeur par rapport au point de palpage défini ou calculé par le cycle. Plus la valeur que vous introduisez est faible, plus vous devez définir les positions de palpage avec précision. Dans de nombreux cycles de palpage, vous pouvez définir une autre distance d'approche qui agit en plus de set_up. Distance d'approche? [mm] F_PREPOS Définir la vitesse lors du prépositionnement : Prépositionnement à la vitesse définie dans FMAX : FMAX_PROBE Prépositionnement selon l'avance rapide de la machine : FMAX_MACHINE Préposition. avance rap.? ENT/ NOENT TRACK Pour augmenter la précision de la mesure, vous pouvez vous servir de TRACK = ON pour faire en sorte que la commande oriente un palpeur infrarouge dans le sens de palpage programmé, avant chaque procédure de palpage. De cette manière, la tige de palpage est toujours déviée dans la même direction : ON : exécuter une orientation broche Orienter palpeur? Oui=ENT/ non=NOENT OFF : ne pas exécuter d'orientation broche SERIAL Vous ne devez pas forcément effectuer un enregistrement dans cette colonne. La commande reporte automatiquement le numéro de série du palpeur, si celui-ci est doté d’une interface EnDat. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Numéro de série ? 391 14 Travail avec les cycles palpeurs | Tableau de palpeurs Abrév. Données Dialogue REACTION Les palpeurs dotés d'un adaptateur anti-collision réagissent par une réinitialisation du signal "Palpeur prêt" dès qu'ils ont détecté une collision. L'enregistrement définit comment la CN doit réagir à une réinitialisation du signal "Palpeur prêt". NCSTOP: interruption du programme CN Réaction ? EMERGSTOP: arrêt d'urgence, freinage plus rapide des axes Avec un palpeur TS 642, vous avez le choix entre TS642-3 et TS642-6, dans la colonne TYPE. Les valeurs 3 et 6 correspondent aux réglages du commutateur dans le compartiment à piles du palpeur. 3: pour l'activation du palpeur par un commutateur à cône. Ne pas opter pour ce mode. Ce mode n'est actuellement pas encore supporté par les commandes HEIDENHAIN. 6: pour l'activation du palpeur via un signal infrarouge. Privilégiez ce mode. 392 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Récapitulatif 15.1 Récapitulatif La CN doit avoir été préparée par le constructeur de la machine pour l'utilisation du palpeur 3D. HEIDENHAIN ne garantit le fonctionnement correct des cycles de palpage qu'avec les palpeurs HEIDENHAIN. Softkey 394 Cycle Page 1420 PALPAGE PLAN Acquisition automatique via trois points, compensation avec la fonction Rotation de base 405 1410 PALPAGE ARETE Acquisition automatique via deux points, compensation avec la fonction Rotation de base ou Rotation du plateau circulaire 410 1411 PALPAGE DEUX CERCLES Acquisition automatique via deux trous ou deux tenons, compensation via la fonction Rotation de base ou Rotation du plateau circulaire 415 400 ROTATION DE BASE Acquisition automatique via deux points, compensation avec la fonction Rotation de base 422 401 ROT. AVEC 2 TROUS Acquisition automatique via deux trous, compensation avec la fonction Rotation de base 425 402 ROT. AVEC 2 TENONS Acquisition automatique via deux tenons, compensation avec la fonction Rotation de base 429 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Récapitulatif Softkey Cycle Page 403 ROT. AVEC AXE ROTATIF Acquisition automatique via deux points, compensation avec la fonction Rotation du plateau circulaire 434 405 ROT. AVEC AXE C Réalignement automatique d'un décalage angulaire entre le centre d'un trou et l'axe Y positif, compensation par rotation du plateau circulaire 439 404 INIT. ROTAT. DE BASE Initialisation d'une rotation de base au choix 443 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 395 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Principes de base des cycles de palpage 14xx 15.2 Principes de base des cycles de palpage 14xx Points communs des cycles palpeurs 14xx Il existe trois cycles qui permettent de déterminer des rotations : 1410 PALPAGE ARETE 1411 PALPAGE DEUX CERCLES 1420 PALPAGE PLAN Ces cycles comprennent : prise en compte de la cinématique active de la machine palpage semi-automatique surveillance des tolérances prise en compte d'un étalonnage 3D détermination automatique de la rotation et de la position Les positions de palpage se réfèrent aux positions nominales programmées dans I-CS. Extraire les positions nominales de votre dessin. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe du palpeur. Définitions Désignation Bref descriptif Position nominale Position de votre dessin, par ex. la position de perçage Cote nominale Cote de votre dessin, par ex. le diamètre de perçage Position effective Résultat de mesure de la position, par ex. la position de perçage Valeur effective Résultat de mesure, par ex. le diamètre de perçage I-CS Système de coordonnées de programmation I-CS : Input Coordinate System W-CS Système de coordonnées de la pièce W-CS : Workpiece Coordinate System Objet Objets à palper : cercle, tenon, plan, arête 396 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Principes de base des cycles de palpage 14xx Evaluation - Point d'origine : Il est possible de mémoriser les décalages dans la transformation de base du tableau de points d'origine lorsque le palpage a lieu dans un plan d'usinage cohérent ou lorsque des objets sont palpés avec un TCPM activé. Les rotations peuvent être mémorisées comme rotation de base dans la transformation de base que contient le tableau de points d'origine, ou bien encore être considérées comme un décalage (offset) du premier axe du plateau circulaire de la pièce. Lors du palpage, les données d'étalonnage 3D sont prises en compte. Si ces données d'étalonnage ne sont pas disponibles, des erreurs peuvent survenir. Si vous souhaitez aussi utiliser une position en plus de la rotation, alors il vous faudra palper la surface le plus verticalement possible. Plus l'erreur angulaire est importante et plus le rayon de la bille de palpage est grande, plus l'erreur de position est grande. Des erreurs angulaires importantes dans la position de départ peuvent être à l'origine d'erreurs de positionnement similaires. Procès-verbal : Les résultats déterminés sont journalisés dans TCHPRAUTO.html et sauvegardés dans les paramètres Q prévus pour le cycle. Les écarts mesurés illustrent la différence des valeurs réelles mesurées par rapport à la moyenne de tolérance. Si aucune tolérance n'est indiquée, ils se réfèrent à la cote nominale. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 397 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Principes de base des cycles de palpage 14xx Mode semi-automatique Si les positions de palpage par rapport au point zéro actuel ne sont pas connues, le cycle peut être exécuté en mode semi-automatique. Vous pouvez alors toujours déterminer la position de départ par prépositionnement manuel avant d'exécuter la procédure de palpage. Vous devez pour cela définir au préalable un "?" comme position nominale nécessaire. Cela peut se faire via la softkey INTRODUIRE TEXTE. Suivant l'objet, vous devez définir les positions nominales qui permettent de déterminer le sens de votre procédure de palpage, voir "Exemples". Déroulement du cycle : 1 Le cycle interrompt le programme CN. 2 Une fenêtre de dialogue apparaît. Procédez comme suit : Utilisez les touches d'orientation des axes pour positionner le palpeur au point de votre choix Sinon, utilisez la manivelle pour le pré-positionnement Au besoin, modifiez les conditions de palpage, par ex. le sens de palpage Appuyez sur NC start Si vous avez programmé la valeur 1 ou 2 pour le retrait à la hauteur de sécurité Q1125, la CN ouvre une fenêtre auxiliaire. Cette fenêtre indique que ce mode de retrait à la hauteur de sécurité n'est pas possible. Continuez à déplacer l'outil tant que cette fenêtre auxiliaire est affichée et utilisez les touches d'axes pour l'amener en position de sécurité. Appuyez sur NC start Le programme est poursuivi. REMARQUE Attention, risque de collision ! Au moment d'exécuter le mode semi-automatique, la CN ignore les valeurs 1 et 2 programmées pour le retrait à la hauteur de sécurité. Selon la position à laquelle se trouve le palpeur, il existe un risque de collision. En mode semi-automatique, effectuer un déplacement manuel à la hauteur de sécurité après chaque procédure de palpage. 398 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Principes de base des cycles de palpage 14xx Reportez-vous à votre dessin pour connaître les positions nominales. Le mode semi-automatique ne fonctionne que dans les modes Machine, pas dans le Test de programme. Si pour un point de palpage donné vous ne définissez aucune position nominale, quelle que soit le sens, la CN émet un message d'erreur. Si vous n'avez défini aucune position nominale pour une direction, la CN mémorisera la position effective comme position nominale après avoir palpé l'objet. Cela signifie que la position effective mesurée est enregistrée a posteriori comme position nominale. Aucune erreur n'est donc enregistrée pour cette position et aucune correction de position n'est nécessaire. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 399 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Principes de base des cycles de palpage 14xx Exemples Important : Indiquez les positions nominales de votre dessin ! Dans ces trois exemples, les positions nominales utilisées proviennent de ce dessin. Perçage Dans cet exemple, il est question d'aligner deux trous. Les palpages sont effectués sur les axes X (principal) et Y (auxiliaire). Il est donc essentiel de définir la position nominale de ces axes ! La position nominale de l'axe Z (axe d'outil) n'est pas requise étant donné que vous n'enregistrez pas de cote dans ce sens. 5 TCH PROBE 1411 PALPAGE DEUX CERCLES 2 1 Définition du cycle QS1100= "?30" ;1ER PT AXE PRINCIPAL Position nominale 1 ; axe principal disponible, mais position de la pièce inconnue QS1101= "?50" ;1ER POINT AXE AUXIL. Position nominale 1 ; axe auxiliaire disponible, mais position de la pièce inconnue QS1102= "?" ;1ER POINT AXE OUTIL Position nominale 1 ; axe d'outil inconnu Q1116=+10 ;DIAMÈTRE 1 Diamètre de la 1ère position QS1103= "?75" ;2È PT AXE PRINCIPAL Position nominale 2 ; axe principal disponible, mais position de la pièce inconnue QS1104= "?50" ;2È POINT AXE AUXIL. Position nominale 2 ; axe auxiliaire disponible, mais position de la pièce inconnue QS1105= "?" ;2ÈME POINT AXE OUTIL Position nominale 2 ; axe d'outil inconnu Q1117=+10 ;DIAMETRE 2 Diamètre de la 2ème position Q1115=+0 ;TYPE DE GEOMETRIE Type de géométrie de deux trous ... ; 400 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Principes de base des cycles de palpage 14xx Arête Dans cet exemple, il est question d'aligner une arête. Le palpage s'effectue sur l'axe Y (axe auxiliaire). Il est donc essentiel de définir la position nominale de cet axe ! Les positions nominales des axes X (principal) et Z (outil) ne sont pas requises étant donné que vous n'enregistrez pas de cote dans ce sens. 2 1 5 TCH PROBE 1410 PALPAGE ARETE Définition du cycle QS1100= "?" ;1ER PT AXE PRINCIPAL Position nominale 1 de l'axe principal inconnue QS1101= "?0" ;1ER POINT AXE AUXIL. Position nominale 1 de l'axe auxiliaire disponible, mais position de la pièce inconnue QS1102= "?" ;1ER POINT AXE OUTIL Position nominale 1 de l'axe d'outil inconnue QS1103= "?" ;2È PT AXE PRINCIPAL Position nominale 2 de l'axe principal inconnue QS1104= "?0" ;2È POINT AXE AUXIL. Position nominale 2 de l'axe auxiliaire disponible, mais position de la pièce inconnue QS1105= "?" ;2ÈME POINT AXE OUTIL Position nominale 2 ; axe d'outil inconnu Q372=+2 ;SENS DE PALPAGE Sens de palpage Y+ ... ; HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 401 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Principes de base des cycles de palpage 14xx Plan Dans cet exemple, il est question d'aligner un plan. Il vous faut ici obligatoirement définir les trois positions nominales. En effet, pour le calcul angulaire, il est important que les trois axes puissent être pris en compte pour le calcul de l'angle. 2 3 1 5 TCH PROBE 1420 PALPAGE PLAN Définition du cycle QS1100= "?50" ;1ER PT AXE PRINCIPAL Position nominale 1 ; axe principal disponible, mais position de la pièce inconnue QS1101= "?10" ;1ER POINT AXE AUXIL. Position nominale 1 de l'axe auxiliaire disponible, mais position de la pièce inconnue QS1102= "?0" ;1ER POINT AXE OUTIL Position nominale 1 de l'axe d'outil, mais position de la pièce inconnue QS1103= "?80" ;2È PT AXE PRINCIPAL Position nominale 2 ; axe principal disponible, mais position de la pièce inconnue QS1104= "?50" ;2È POINT AXE AUXIL. Position nominale 2 de l'axe auxiliaire disponible, mais position de la pièce inconnue QS1105= "?0" ;2ÈME POINT AXE OUTIL Position nominale 2 de l'axe d'outil, mais position de la pièce inconnue QS1106= "?20" ;3È PT AXE PRINCIPAL Position nominale 3 ; axe principal disponible, mais position de la pièce inconnue QS1107= "?80" ;3È POINT AXE AUXIL. Position nominale 3 de l'axe auxiliaire disponible, mais position de la pièce inconnue QS1108= "?0" ;3È POINT AXE OUTIL Position nominale 3 de l'axe d'outil, mais position de la pièce inconnue Q372=-3 ;SENS DE PALPAGE Sens de palpage Z- ... ; 402 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Principes de base des cycles de palpage 14xx Evaluation des tolérances En option, il est aussi possible de surveiller les tolérances. Dans ce cas, vous pouvez surveiller la position et la dimension d'un objet. Dès lors qu'une cote est prévue avec des tolérances, cette cote fait l'objet d'une surveillance et l'état d'erreur du paramètre de retour Q183 est activé. Le contrôle des tolérances et l'état se réfèrent à la situation pendant le palpage. C'est seulement après que le cycle corrige le point d'origine, le cas échéant. Déroulement du cycle : Si Q309=1 pour la réaction à l'erreur, la CN vérifie le rebut et la reprise d'usinage. Si Q309=2, la CN ne vérifie que le rebut. Si la position effective déterminée est erronée, la CN interrompt le programme CN. Une fenêtre de dialogue s'affiche. Toutes les cotes effectives et nominales de l'objet sont représentées. Vous pouvez alors décider de poursuivre ou d'interrompre le programme CN. Pour poursuivre le programme CN, appuyez sur NC start. Appuyez sur la softkey ANNULER pour annuler Notez que les cycles de palpage vous retournent les écarts par rapport au centre de tolérance des paramètres Q98x et Q99x. Ces valeurs représentent les mêmes valeurs de correction que celles que le cycle exécute lorsque les paramètres de programmation Q1120 et Q1121 ont été définis en conséquence. Si aucune évaluation automatique n'est programmée, la CN mémorise les valeurs par rapport à la moyenne de tolérance aux paramètres Q prévus à cet effet, et vous pouvez continuer à traiter ces valeurs. 5 TCH PROBE 1410 PALPAGE DEUX CERCLES Définition du cycle Q1100=+50 ;1ER PT AXE PRINCIPAL Position nominale 1 ; axe principal Q1101= +50 ;1ER POINT AXE AUXIL. Position nominale 1 ; axe auxiliaire Q1102= -5 ;1ER POINT AXE OUTIL Position nominale 1 ; axe d'outil QS1116="+9-1-0.5" ;DIAMETRE 1 Diamètre 1 avec donnée de tolérance Q1103= +80 ;2È PT AXE PRINCIPAL Position nominale 2 ; axe principal Q1104=+60 ;2È POINT AXE AUXIL. Position nominale 2 ; axe auxiliaire QS1105= -5 ;2ÈME POINT AXE OUTIL Position nominale 2 ; axe d'outil QS1117="+9-1-0,5" ;DIAMETRE 2 ... ; Q309=2 ;REACTION A L'ERREUR ... ; HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Diamètre 2 avec donnée de tolérance 403 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Principes de base des cycles de palpage 14xx Transfert d'une position effective Vous pouvez déterminer au préalable la position effective et la définir comme position effective dans le cycle de palpage. L'objet reçoit alors à la fois une position nominale et une position effective. A partir de la différence, le cycle calcule les corrections requises et procède à une surveillance de la tolérance. Pour cela, faites précéder la position nominale requise d'un "@". Cela peut se faire via la softkey INTRODUIRE TEXTE. La position effective peut être indiquée à la suite de "@". Si vous recourez au signe @, aucun palpage ne peut avoir lieu. La CN ne calcule que les positions effectives et nominales. Vous devez définir les positions effectives des trois axes (axe principal/auxiliaire/d'outil). Si vous ne définissez la position effective que d'un seul axe, la CN émet un message d'erreur. Les positions effectives peuvent également être définies avec des paramètres Q Q1900-Q1999. Exemple Ceci vous permet par exemple : de déterminer un motif circulaire à partir de différents objets d'aligner un engrenage avec son centre et la position d'une dent 5 TCH PROBE 1410 PALPAGE ARETE QS1100= "10+0.02@10.0123" ;1ER PT AXE PRINCIPAL Position nominale 1 de l'axe principal avec surveillance de la tolérance et de la position effective QS1101="50@50.0321" ;1ER POINT AXE AUXIL. Position nominale 1 de l'axe auxiliaire avec surveillance de la tolérance et de la position effective QS1102= "-10-0.2+0.02@Q1900" ;1ER POINT AXE OUTIL ... 404 Position nominale 1 de l'axe d'outil avec surveillance de la tolérance et de la position effective ; HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DU PLAN (cycle 1420, DIN/ISO : G1420, option 17) 15.3 PALPAGE DU PLAN (cycle 1420, DIN/ISO : G1420, option 17) Déroulement du cycle Le cycle palpeur 1420 détermine les angles d'un plan en mesurant trois points et en définissant les valeurs aux paramètres Q. 1 La CN positionne le palpeur au point de palpage 1, en avance rapide (valeur provenant de la colonne FMAX) et selon la logique de positionnement ("Exécuter les cycles palpeurs"). Là, le palpeur mesure le premier point du plan. La commande décale alors le palpeur de la valeur de distance d'approche dans le sens opposé au sens de palpage 2 Si vous avez programmé le retrait à la hauteur de sécurité, le palpeur est ensuite ramené à la hauteur de sécurité (en fonction de Q1125), puis positionné au point de palpage 2 , où il mesure la valeur effective du deuxième point du plan. 3 Après cela, le palpeur revient à la hauteur de sécurité (en fonction de Q1125), puis vient se positionner au point de palpage 3 du plan d'usinage, où il mesure la position effective du troisième point du plan. 4 Pour finir, la commande ramène le palpeur à la hauteur de sécurité (en fonction de Q1125) et mémorise les valeurs déterminées aux paramètres Q suivants : Numéros de paramètres Signification Q950 à Q952 1ère position mesurée sur l'axe principal, l'axe auxiliaire et l'axe d'outil Q953 à Q955 2ème position mesuré sur l'axe principal, l'axe auxiliaire et l'axe d'outil Q956 à Q958 3ème position mesurée sur l'axe principal, l'axe auxiliaire et l'axe d'outil Q961 à Q963 Angles dans l'espace SPA, SPB et SPC mesurés dans W-CS Q980 à Q982 Premières erreurs de positions mesurées Q983 à Q985 Deuxièmes erreurs de positions mesurées Q986 à Q988 Troisièmes erreurs de positions mesurées Q183 Etat de la pièce (-1=non défini / 0=bon / 1=reprise d'usinage / 2=rebut) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 2 3 1 405 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DU PLAN (cycle 1420, DIN/ISO : G1420, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous n'effectuez pas de déplacement à la hauteur de sécurité entre les objets ou point palpés, vous risquez une collision. Amener le palpeur à la hauteur de sécurité chaque fois que vous avez fini de palper un objet ou un point. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. HEIDENHAIN conseille d'éviter les angles d'axes pour ce cycle ! Les trois points de palpage ne peuvent pas se trouver sur une ligne droite pour que la CN puisse calculer les valeurs angulaires. Vous obtenez l'angle spatial nominal en définissant les positions nominales. Le cycle mémorise l'angle spatial mesuré aux paramètres Q961 à Q963. Pour la prise en compte dans la rotation de base 3D, la CN utilise l'écart entre l'angle spatial mesuré et l'angle spatial nominal. Aligner les axes du plateau circulaire : L'alignement avec les axes du plateau circulaire n'est possible que si deux axes du plateau circulaire sont disponibles dans la cinématique. Pour aligner les axes du plateau circulaire (Q1126 différent de 0), la rotation doit être enregistrée (Q1121 différent de 0). Dans le cas contraire, vous recevez un message d'erreur. En effet, les axes du plateau circulaire ne peuvent pas être alignés sans définir l'évaluation de la rotation. 406 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DU PLAN (cycle 1420, DIN/ISO : G1420, option 17) Paramètres du cycle Q1100 1è pos. nomi. sur axe principal? (en absolu) : position nominale du premier point de palpage dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1101 1è pos. nominale sur axe auxil.? (en absolu) : position nominale du premier point de palpage de l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1102 1è pos. nominale sur axe outil? (en absolu) : position nominale du premier point de palpage dans l'axe d'outil du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1103 2è pos. nomi. sur axe principal? (en absolu) : position nominale du premier point de palpage dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1104 2è pos. nominale sur axe auxil.? (en absolu) : position nominale du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1105 2è pos. nominale sur axe outil? (en absolu) : position nominale du premier point de palpage dans l'axe d'outil du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1106 3è pos. nomi. sur axe principal? (en absolu) : position nominale du troisième point de palpage dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1107 3è pos. nominale sur axe auxil.? (en absolu) : position nominale du troisième point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1108 3è pos. nominale sur axe outil? (en absolu) : position nominale du troisième point de palpage dans l'axe d'outil du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q372 Sens de palpage (-3...+3)? : vous déterminez ici l'axe dans le sens duquel le palpage doit avoir lieu. Le signe vous permet de définir les sens de déplacement positif et négatif de l'axe de palpage. Plage de programmation : -3 à +3 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Z 2 1 3 X Q1106 Q1100 Q1103 Z 1 2 3 Q1105 Q1102 Q1108 Y Q1101 Q1104 Q1107 Q372= +3 -3 +2 +1 -2 -1 Z Q260 X 407 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DU PLAN (cycle 1420, DIN/ISO : G1420, option 17) Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q1125 Dépl. à hauteur de sécurité? : vous définissez ici comme palpeur se déplace entre les points de palpage : -1 : pas de déplacement à la hauteur de sécurité 0 : déplacement à la hauteur de sécurité avant et après le cycle 1 : déplacement à la hauteur de sécurité avant et après chaque objet 2 : déplacement à la hauteur de sécurité avant et après chaque point de palpage Q309 Réaction à l'err. de tolérance? Vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur si un écart a été détecté : 0 : en cas de dépassement de la tolérance, ne pas interrompre l'exécution du programme et ne pas émettre de message d'erreur 1 : en cas de dépassement de la tolérance, interrompre l'exécution du programme et émettre un message d'erreur 2 : si la position effective déterminée se trouve le long du vecteur normal à la surface, en dessous de la coordonnée nominale, la commande émet un message d'erreur et interrompt l'exécution du programme. En revanche, il n'y a aucune réaction à l'erreur, si la valeur déterminée se trouve dans une plage de reprise d'usinage. 408 Exemple 5 TCH PROBE 1420 PALPAGE PLAN Q1100=+0 ;1ER PT AXE PRINCIPAL Q1101=+0 ;1ER POINT AXE AUXIL. Q1102=+0 ;1ER POINT AXE OUTIL Q1103=+0 ;2È PT AXE PRINCIPAL Q1104=+0 ;2È POINT AXE AUXIL. Q1105=+0 ;2ÈME POINT AXE OUTIL Q1106=+0 ;3È PT AXE PRINCIPAL Q1107=+0 ;3È POINT AXE AUXIL. Q1108=+0 ;3È POINT AXE AUXIL. Q372=+1 ;SENS DE PALPAGE Q320=+0 ;DISTANCE D'APPROCHE Q260=+100 ;HAUTEUR DE SECURITE Q1125=+2 ;MODE HAUT. DE SECU. Q309=+0 ;REACTION A L'ERREUR Q1126=+0 ;ALIGNER AXES ROT. Q1120=+0 ;POSITION A MEMORISER Q1121=+0 ;MEMORISER ROTATION HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DU PLAN (cycle 1420, DIN/ISO : G1420, option 17) Q1126 Aligner les axes rotatifs ? : positionner les axes inclinés pour l'usinage incliné : 0 : conserver la position actuelle des axes inclinés 1 : positionner automatiquement l'axe incliné et actualiser la pointe de palpage (MOVE). La position relative entre la pièce et le palpeur reste inchangée. La commande exécute un mouvement de compensation avec les axes linéaires. 2 : positionner automatiquement l'axe incliné sans actualiser la pointe de palpage (TURN) Q1120 Position à reprendre ? : vous définissez le point de palpage à utiliser pour corriger le point d'origine actif : 0: aucune correction 1: correction par rapport au 1er point de palpage 2: correction par rapport au 2ème point de palpage 3: correction par rapport au 3ème pont de palpage 4: correction par rapport au point de palpage moyenné Q1121 Mémoriser la rotation de base ? : vous définissez si la commande doit mémoriser ou non le désalignement comme rotation de base : 0 : pas de rotation de base 1 : définir une rotation de base. La commande mémorise ici la rotation de base. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 409 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE D'UNE ARETE (cycle 1410, DIN/ISO : G1420, option 17) 15.4 PALPAGE D'UNE ARETE (cycle 1410, DIN/ISO : G1420, option 17) Déroulement du cycle Le cycle de palpage 1410 détermine le désalignement d'une pièce en mesurant deux points d'une arête. Ce cycle détermine la rotation à partir de l'écart entre l'angle mesuré et l'angle nominal. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au point de palpage programmé 1, selon la logique de positionnement définie "Exécuter les cycles palpeurs". La somme de Q320, SET_UP et du rayon de la bille de palpage est prise en compte dans chaque sens de palpage, lors du palpage. La commande décale alors le palpeur dans le sens opposé au sens de palpage. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée 3 Le palpeur est ensuite amené au point de palpage suivant 2, où il exécute la deuxième procédure de palpage. 4 Pour finir, la commande ramène le palpeur à la hauteur de sécurité (en fonction de Q1125) et mémorise la valeur déterminée au paramètre Q suivant : Numéros de paramètres Signification Q950 à Q952 1ère position mesurée sur l'axe principal, l'axe auxiliaire et l'axe d'outil Q953 à Q955 2ème position mesuré sur l'axe principal, l'axe auxiliaire et l'axe d'outil Q964 Angle de rotation mesuré dans I-CS Q965 Angle de rotation mesuré dans le système de coordonnées du plateau circulaire Q980 à Q982 Premières erreurs de positions mesurées Q983 à Q985 Deuxièmes erreurs de positions mesurées Q994 Erreur d'angle mesurée dans I-CS Q995 Ecart angulaire mesuré dans le système de coordonnées du plateau circulaire Q183 Etat de la pièce (-1=non défini / 0=bon / 1=reprise d'usinage / 2=rebut) 410 2 1 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE D'UNE ARETE (cycle 1410, DIN/ISO : G1420, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous n'effectuez pas de déplacement à la hauteur de sécurité entre les objets ou point palpés, vous risquez une collision. Amener le palpeur à la hauteur de sécurité chaque fois que vous avez fini de palper un objet ou un point. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Aligner les axes du plateau circulaire : Il n'est possible d'aligner les axes rotatifs d'un plateau circulaire que si la rotation mesurée peut être corrigée via un axe du plateau circulaire. Dans ce cas, il doit s'agir du premier axe du plateau circulaire en partant de la pièce. Pour aligner les axes du plateau circulaire (Q1126 différent de 0), la rotation doit être enregistrée (Q1121 différent de 0). Dans le cas contraire, vous recevez un message d'erreur. En effet, les axes du plateau circulaire ne peuvent pas être alignés avec une rotation de base active. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 411 15 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE D'UNE ARETE (cycle 1410, DIN/ISO : G1420, option 17) Paramètres du cycle Q1100 1è pos. nomi. sur axe principal? (en absolu) : position nominale du premier point de palpage dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1101 1è pos. nominale sur axe auxil.? (en absolu) : position nominale du premier point de palpage de l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1102 1è pos. nominale sur axe outil? (en absolu) : position nominale du premier point de palpage dans l'axe d'outil du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1103 2è pos. nomi. sur axe principal? (en absolu) : position nominale du premier point de palpage dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1104 2è pos. nominale sur axe auxil.? (en absolu) : position nominale du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1105 2è pos. nominale sur axe outil? (en absolu) : position nominale du premier point de palpage dans l'axe d'outil du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q372 Sens de palpage (-3...+3)? : vous déterminez ici l'axe dans le sens duquel le palpage doit avoir lieu. Le signe vous permet de définir les sens de déplacement positif et négatif de l'axe de palpage. Plage de programmation : -3 à +3 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 412 Z 1 2 Q1102 Q1105 X Q1100 Q1103 Z 1/2 Y Q1101/Q1104 Q372= +3 +2 -3 +1 -2 -1 Z Q260 Y HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE D'UNE ARETE (cycle 1410, DIN/ISO : G1420, option 17) Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q1125 Dépl. à hauteur de sécurité? : vous définissez ici comme palpeur se déplace entre les points de palpage : -1 : pas de déplacement à la hauteur de sécurité 0 : déplacement à la hauteur de sécurité avant et après le cycle 1 : déplacement à la hauteur de sécurité avant et après chaque objet 2 : déplacement à la hauteur de sécurité avant et après chaque point de palpage Q309 Réaction à l'err. de tolérance? Vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur si un écart a été détecté : 0 : en cas de dépassement de la tolérance, ne pas interrompre l'exécution du programme et ne pas émettre de message d'erreur 1 : en cas de dépassement de la tolérance, interrompre l'exécution du programme et émettre un message d'erreur 2 : si la position effective déterminée se trouve le long du vecteur normal à la surface, en dessous de la coordonnée nominale, la commande émet un message d'erreur et interrompt l'exécution du programme. En revanche, il n'y a aucune réaction à l'erreur, si la valeur déterminée se trouve dans une plage de reprise d'usinage. Q1126 Aligner les axes rotatifs ? : positionner les axes inclinés pour l'usinage incliné : 0 : conserver la position actuelle des axes inclinés 1 : positionner automatiquement l'axe incliné et actualiser la pointe de palpage (MOVE). La position relative entre la pièce et le palpeur reste inchangée. La commande exécute un mouvement de compensation avec les axes linéaires. 2 : positionner automatiquement l'axe incliné sans actualiser la pointe de palpage (TURN) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 1410 PALPAGE ARETE Q1100=+0 ;1ER PT AXE PRINCIPAL Q1101=+0 ;1ER POINT AXE AUXIL. Q1102=+0 ;1ER POINT AXE OUTIL Q1103=+0 ;2È PT AXE PRINCIPAL Q1104=+0 ;2È POINT AXE AUXIL. Q1105=+0 ;2ÈME POINT AXE OUTIL Q372=+1 ;SENS DE PALPAGE Q320=+0 ;DISTANCE D'APPROCHE Q260=+100 ;HAUTEUR DE SECURITE Q1125=+2 ;MODE HAUT. DE SECU. Q309=+0 ;REACTION A L'ERREUR Q1126=+0 ;ALIGNER AXES ROT. Q1120=+0 ;POSITION A MEMORISER Q1121=+0 ;MEMORISER ROTATION 413 15 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE D'UNE ARETE (cycle 1410, DIN/ISO : G1420, option 17) Q1120 Position à reprendre ? : vous définissez le point de palpage à utiliser pour corriger le point d'origine actif : 0: aucune correction 1: correction par rapport au 1er point de palpage 2: correction par rapport au 2ème point de palpage 3: correction par rapport au point de palpage moyenné Q1121 Mémoriser la rotation ? : vous définissez ici si la commande doit mémoriser le désalignement déterminé comme rotation de base : 0 : pas de rotation de base 1 : définir une rotation de base. La commande mémorise la rotation de base. 2 : exécuter la rotation du plateau circulaire. Un enregistrement s'effectue dans la colonne d'offset du tableau de points d'origine. 414 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DE DEUX CERCLES (cycle 1411, DIN/ISO : G1420, option 17) 15.5 PALPAGE DE DEUX CERCLES (cycle 1411, DIN/ISO : G1420, option 17) Déroulement du cycle Le cycle palpeur 1411 permet d'acquérir les centres de deux trous ou de deux tenons et de calculer une ligne droite reliant ces deux centres. Ce cycle s'appuie sur la différence entre l'angle mesuré et l'angle nominale pour déterminer la rotation dans le plan d'usinage. 1 La CN positionne le palpeur au centre 1, en avance rapide (valeur provenant de la colonne FMAX) et selon la logique de positionnement ("Exécuter les cycles palpeurs"). La somme de Q320, SET_UP et du rayon de la bille de palpage est prise en compte dans chaque sens de palpage, lors du palpage. La commande décale alors le palpeur de la valeur de distance d'approche dans le sens opposé au sens de palpage 2 Le palpeur se déplace ensuite à la hauteur de mesure programmée et acquiert le centre du premier trou ou tenon par des opérations de palpage (dépend du nombre de palpages indiqué au paramètre Q423). 3 Puis, le palpeur revient à la hauteur de sécurité et se positionne au niveau du centre du deuxième trou ou du deuxième tenon 2 programmé. 4 La commande amène le palpeur à la hauteur de mesure programmée et acquiert le centre du deuxième trou ou du deuxième tenon par des opérations de palpage (dépend du nombre de palpages indiqué au paramètre Q423). 5 Pour finir, la commande ramène le palpeur à la hauteur de sécurité (en fonction de Q1125) et mémorise la valeur déterminée au paramètre Q suivant : Numéros de paramètres Signification Q950 à Q952 1ère position mesurée sur l'axe principal, l'axe auxiliaire et l'axe d'outil Q953 à Q955 2ème position mesuré sur l'axe principal, l'axe auxiliaire et l'axe d'outil Q964 Angle de rotation mesuré dans I-CS Q965 Angle de rotation mesuré dans le système de coordonnées du plateau circulaire Q966 à Q967 Premier et deuxième diamètres mesurés Q980 à Q982 Premières erreurs de positions mesurées Q983 à Q985 Deuxièmes erreurs de positions mesurées Q994 Erreur d'angle mesurée dans I-CS HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 2 1 415 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DE DEUX CERCLES (cycle 1411, DIN/ISO : G1420, option 17) Numéros de paramètres Signification Q995 Ecart angulaire mesuré dans le système de coordonnées du plateau circulaire Q996 à Q997 Ecart mesuré pour le premier diamètre et le deuxième diamètre Q183 Etat de la pièce (-1=non défini / 0=bon / 1=reprise d'usinage / 2=rebut) 416 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DE DEUX CERCLES (cycle 1411, DIN/ISO : G1420, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous n'effectuez pas de déplacement à la hauteur de sécurité entre les objets ou point palpés, vous risquez une collision. Amener le palpeur à la hauteur de sécurité chaque fois que vous avez fini de palper un objet ou un point. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Si le trou est trop petit pour pouvoir respecter la distance d'approche programmée, une boîte de dialogue s'ouvre. Celle-ci indique la cote nominale du trou, le rayon étalonné de la bille du palpeur et la distance d'approche maximale possible. Ce dialogue peut être acquitté avec NC start ou bien quitté par softkey. Si l'acquittement se fait avec NC start, alors la distance d'approche effective ne sera réduite à la valeur affichée que pour cet objet de palpage. Aligner les axes du plateau circulaire : Il n'est possible d'aligner les axes rotatifs d'un plateau circulaire que si la rotation mesurée peut être corrigée via un axe du plateau circulaire. Dans ce cas, il doit s'agir du premier axe du plateau circulaire en partant de la pièce. Pour aligner les axes du plateau circulaire (Q1126 différent de 0), la rotation doit être enregistrée (Q1121 différent de 0). Dans le cas contraire, vous recevez un message d'erreur. En effet, les axes du plateau circulaire ne peuvent pas être alignés avec une rotation de base active. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 417 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DE DEUX CERCLES (cycle 1411, DIN/ISO : G1420, option 17) Paramètres du cycle Q1100 1è pos. nomi. sur axe principal? (en absolu) : position nominale du premier point de palpage dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1101 1è pos. nominale sur axe auxil.? (en absolu) : position nominale du premier point de palpage de l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1102 1è pos. nominale sur axe outil? (en absolu) : position nominale du premier point de palpage dans l'axe d'outil du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1116 Diamètre 1ère position ? : diamètre du premier trou ou du premier tenon. Plage de programmation : 0 à 9999,9999 Q1103 2è pos. nomi. sur axe principal? (en absolu) : position nominale du premier point de palpage dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1104 2è pos. nominale sur axe auxil.? (en absolu) : position nominale du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1105 2è pos. nominale sur axe outil? (en absolu) : position nominale du premier point de palpage dans l'axe d'outil du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q1117 Diamètre 2ème position ? : diamètre du deuxième trou ou deuxième tenon. Plage de programmation : 0 à 9999,9999 Q1115 Type de géométrie (0-3)?: vous définissez la géométrie des objets 0: 1ère position=perçage et 2ème position=perçage 1: 1ère position=tenon et 2ème position=tenon 2: 1ère position=perçage et 2ème position=tenon 3: 1ère position=tenon et 2ème position=perçage Q423 Nombre de palpages? (en absolu) : nombre de points de palpage sur le diamètre. Plage de programmation : 3 à 8 418 Z 2 1 Q1105 Q1102 X Q1100 Q1103 Q1117 2 Z Q1116 1 Y Q1101 Q1104 Y Q1119 Q325 X Z Q260 X HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DE DEUX CERCLES (cycle 1411, DIN/ISO : G1420, option 17) Q325 Angle initial? (en absolu) : angle entre l'axe principal du plan d'usinage et le premier point de palpage. Plage de programmation : -360,000 à 360,000 Q1119 Angle d'ouverture du cercle ? : plage angulaire sur laquelle les palpages sont effectués. Plage de programmation : -359,999 à +360,000 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs) et uniquement lorsque le point d'origine est palpé dans l'axe de palpage. Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q1125 Dépl. à hauteur de sécurité? : vous définissez ici comme palpeur se déplace entre les points de palpage : -1 : pas de déplacement à la hauteur de sécurité 0 : déplacement à la hauteur de sécurité avant et après le cycle 1 : déplacement à la hauteur de sécurité avant et après chaque objet 2 : déplacement à la hauteur de sécurité avant et après chaque point de palpage Q309 Réaction à l'err. de tolérance? Vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur si un écart a été détecté : 0 : en cas de dépassement de la tolérance, ne pas interrompre l'exécution du programme et ne pas émettre de message d'erreur 1 : en cas de dépassement de la tolérance, interrompre l'exécution du programme et émettre un message d'erreur 2 : si la position effective déterminée se trouve le long du vecteur normal à la surface, en dessous de la coordonnée nominale, la commande émet un message d'erreur et interrompt l'exécution du programme. En revanche, il n'y a aucune réaction à l'erreur, si la valeur déterminée se trouve dans une plage de reprise d'usinage. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 1410 PALPAGE DEUX CERCLES Q1100=+0 ;1ER PT AXE PRINCIPAL Q1101=+0 ;1ER POINT AXE AUXIL. Q1102=+0 ;1ER POINT AXE OUTIL Q1116=0 ;DIAMETRE 1 Q1103=+0 ;2È PT AXE PRINCIPAL Q1104=+0 ;2È POINT AXE AUXIL. Q1105=+0 ;2ÈME POINT AXE OUTIL Q1117=+0 ;DIAMETRE 2 Q1115=0 ;TYPE DE GEOMETRIE Q423=4 ;NOMBRE DE PALPAGES Q325=+0 ;ANGLE INITIAL Q1119=+360;ANGLE D'OUVERTURE Q320=+0 ;DISTANCE D'APPROCHE Q260=+100 ;HAUTEUR DE SECURITE Q1125=+2 ;MODE HAUT. DE SECU. Q309=+0 ;REACTION A L'ERREUR Q1126=+0 ;ALIGNER AXES ROT. Q1120=+0 ;POSITION A MEMORISER Q1121=+0 ;MEMORISER ROTATION 419 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | PALPAGE DE DEUX CERCLES (cycle 1411, DIN/ISO : G1420, option 17) Q1126 Aligner les axes rotatifs ? : positionner les axes inclinés pour l'usinage incliné : 0 : conserver la position actuelle des axes inclinés 1 : positionner automatiquement l'axe incliné et actualiser la pointe de palpage (MOVE). La position relative entre la pièce et le palpeur reste inchangée. La commande exécute un mouvement de compensation avec les axes linéaires. 2 : positionner automatiquement l'axe incliné sans actualiser la pointe de palpage (TURN) Q1120 Position à reprendre ? : vous définissez le point de palpage à utiliser pour corriger le point d'origine actif : 0: aucune correction 1: correction par rapport au 1er point de palpage 2: correction par rapport au 2ème point de palpage 3: correction par rapport au point de palpage moyenné Q1121 Mémoriser la rotation ? : vous définissez ici si la commande doit mémoriser le désalignement déterminé comme rotation de base : 0 : pas de rotation de base 1 : définir une rotation de base. La commande mémorise la rotation de base. 2 : exécuter la rotation du plateau circulaire. Un enregistrement s'effectue dans la colonne d'offset du tableau de points d'origine. 420 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Principes de base des cycles palpeurs 4xx 15.6 Principes de base des cycles palpeurs 4xx Particularités communes aux cycles palpeurs pour déterminer le désalignement d'une pièce Pour les cycles 400, 401 et 402, vous pouvez définir avec le paramètre Q307 Configuration rotation de base si le résultat de la mesure doit être corrigé en fonction de la valeur d'un angle a connu (voir figure de droite). Ceci vous permet de mesurer la rotation de base au niveau de la ligne droite de votre choix 1 sur la pièce et d'établir une relation par rapport au sens 0° 2 . Ces cycles ne fonctionnent pas avec la rotation 3D ! Dans ce cas, utilisez plutôt les cycles 14xx. Informations complémentaires : "Principes de base des cycles de palpage 14xx", Page 396 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 421 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE (cycle 400, DIN/ISO : G400, option 17) 15.7 ROTATION DE BASE (cycle 400, DIN/ISO : G400, option 17) Mode opératoire du cycle Le cycle palpeur 400 mesure deux points qui se trouvent sur une droite pour déterminer le désalignement de la pièce. Avec la fonction "Rotation de base", la commande compense la valeur mesurée. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au point de palpage programmé 1, selon la logique de positionnement définie (voir "Exécuter les cycles palpeurs", Page 389). La commande décale alors le palpeur de la valeur de la distance d'approche, dans le sens opposé au sens de déplacement défini. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée 3 Puis, le palpeur se rend au point de palpage suivant 2 et exécute la deuxième opération de palpage. 4 La commande positionne le palpeur à la hauteur de sécurité et exécute la rotation de base déterminée. Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. La commande réinitialise une rotation de base active en début de cycle. 422 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE (cycle 400, DIN/ISO : G400, option 17) Paramètres du cycle Q263 1er point mesure sur 1er axe? (en absolu) : coordonnée du premier point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q264 1er point mesure sur 2ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q265 2ème point mesure sur 1er axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q266 2ème point mesure sur 2ème axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe auxiliaire du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q272 Axe de mesure (1=1er / 2=2ème)? : axe du plan d'usinage sur lequel la mesure doit avoir lieu : 1 : axe principal = axe de mesure 2 : axe auxiliaire = axe de mesure Q267 Sens déplacement 1 (+1=+/-1=-)? : sens dans lequel le palpeur doit s’approcher de la pièce : -1 : sens de déplacement négatif +1 : sens de déplacement positif Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Exemple 5 TCH PROBE 400 ROTATION DE BASE Q263=+10 ;1ER POINT 1ER AXE Q264=+3,5 ;1ER POINT 2EME AXE Q265=+25 ;2EME POINT 1ER AXE Q266=+2 ;2EME POINT 2EME AXE Q272=+2 ;AXE DE MESURE Q267=+1 ;SENS DEPLACEMENT Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q307=0 ;PRESEL. ANGLE ROT. Q305=0 ;NO. DANS TABLEAU Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 423 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE (cycle 400, DIN/ISO : G400, option 17) Q307 Présélection angle de rotation (en absolu) : si le désalignement à mesurer ne se trouve pas sur l'axe principal mais sur une ligne droite, entrer l'angle de la droite de référence. La commande détermine ensuite, pour la rotation de base, la différence entre la valeur mesurée et l'angle de la droite de référence. Plage de programmation : -360,000 à 360,000 Q305 Numéro preset dans tableau? : indiquer le numéro du tableau de points d'origine sous lequel la commande doit mémoriser la rotation de base déterminée. Si vous programmez Q305=0, la commande mémorise la rotation de base déterminée dans le menu ROT du mode Manuel. Plage de programmation : 0 à 99999 424 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE via deux trous (cycle 401, DIN/ISO: G401, option 17) 15.8 ROTATION DE BASE via deux trous (cycle 401, DIN/ISO: G401, option 17) Mode opératoire du cycle Le cycle palpeur 401 permet d'acquérir le centre de deux trous. La commande calcule ensuite l'angle entre l'axe principal du plan d'usinage et la droite qui fait la liaison entre les centres des perçages. La commande utilise la fonction Rotation de base pour compenser la valeur calculée. En alternative, vous pouvez aussi compenser le désalignement déterminé par une rotation du plateau circulaire. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au centre du premier trou 1, selon la logique de positionnement définie (voir "Exécuter les cycles palpeurs", Page 389). 2 Le palpeur se déplace ensuite à la hauteur de mesure programmée et enregistre le centre du premier trou en palpant quatre fois. 3 Puis, le palpeur retourne à la hauteur de sécurité avant de se positionner au centre programmé du deuxième trou 2. 4 La commande déplace le palpeur à la hauteur de mesure programmée et enregistre le centre du deuxième trou en palpant quatre fois. 5 Pour terminer, la commande retire le palpeur à la hauteur de sécurité et exécute la rotation de base calculée. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 425 15 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE via deux trous (cycle 401, DIN/ISO: G401, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. La commande réinitialise une rotation de base active en début de cycle. Si vous souhaitez compenser l'erreur d'alignement par une rotation du plateau circulaire, la commande utilise alors automatiquement les axes rotatifs suivants : C avec axe d’outil Z B avec l'axe d'outil Y A avec axe d’outil X 426 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE via deux trous (cycle 401, DIN/ISO: G401, option 17) Paramètres du cycle Q268 1er trou: centre sur 1er axe? (en absolu) : centre du premier trou dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q269 1er trou: centre sur 2ème axe? (en absolu) : centre du premier trou dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q270 2ème trou: centre sur 1er axe? (en absolu) : centre des deux trous dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q271 2ème trou: centre sur 2ème axe? (en absolu) : centre du deuxième trou dans l'axe auxiliaire du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q307 Présélection angle de rotation (en absolu) : si le désalignement à mesurer ne se trouve pas sur l'axe principal mais sur une ligne droite, entrer l'angle de la droite de référence. La commande détermine ensuite, pour la rotation de base, la différence entre la valeur mesurée et l'angle de la droite de référence. Plage de programmation : -360,000 à 360,000 Q305 Numéro dans tableau? Indiquez le numéro d'une ligne du tableau de points d'origine. La commande effectue alors l'enregistrement correspondant sur cette ligne : plage de programmation comprise entre 0 et 99 999 Q305 = 0 : l'axe rotation est mis à zéro à la ligne 0 du tableau de points d'origine. Un enregistrement est donc effectué dans la colonne OFFSET. (Exemple : pour l’axe d’outil Z, l’enregistrement se fait dans C_OFFS.) De plus, toutes les autres valeurs (X, Y, Z, etc.) du point d’origine actif sont reprises à la ligne 0 du tableau de points d’origine. Le point d’origine est en outre activé à la ligne 0. Q305 > 0 : l’axe rotatif est mis à zéro sur la ligne ici indiquée du tableau de points d’origine. Un enregistrement est donc effectué dans la colonne OFFSET correspondante du tableau de points d’origine. (Exemple : pour l’axe d’outil Z, l’enregistrement se fait dans C_OFFS.) Q305 dépend des paramètres suivants : HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 401 ROT 2 TROUS Q268=-37 ;1ER CENTRE 1ER AXE Q269=+12 ;1ER CENTRE 2EME AXE Q270=+75 ;2EME CENTRE 1ER AXE Q271=+20 ;2EME CENTRE 2EME AXE Q261=-5 ;HAUTEUR DE MESURE Q260=+20 ;HAUTEUR DE SECURITE Q307=0 ;PRESEL. ANGLE ROT. Q305=0 ;NO. DANS TABLEAU Q402=0 ;COMPENSATION Q337=0 ;INITIALIS. A ZERO 427 15 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE via deux trous (cycle 401, DIN/ISO: G401, option 17) Q337 = 0 et simultanément Q402 = 0 : une rotation de base est définie à la ligne indiquée avec Q305. (Exemple : pour l'axe d'outil Z, la rotation de base est enregistrée dans la colonne SPC) Q337 = 0 et simultanément Q402 = 1 : le paramètre Q305 n'a aucun effet. Q337 = 1 : le paramètre Q305 agit comme décrit plus haut. Q402 Rotation base/alignement (0/1) : vous définissez ici si la commande doit définir le désalignement déterminé comme rotation de base ou compenser le désalignement par rotation de la table : 0 : définir la rotation de base : la commande mémorise la rotation de base (exemple : pour l'axe d’outil Z, la commande utilise la colonne SPC) 1 : tourner la table rotative : un enregistrement s'effectue à la colonne Offset du tableau de points d’origine (exemple : pour l’axe d’outil Z, la commande utilise la colonne C_Offs) et l'axe concerné pivote Q337 Init. à zéro après dégauchissage : vous définissez ici si la commande doit afficher les positions de l'axe rotatif concerné par rapport à 0 : 0 : après l'alignement, l'affichage des position n'est pas mis à 0 1 : après l'alignement, l'affichage des positions est mis à 0, si vous avez défini Q402=1 au préalable 428 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE via deux tenons (cycle 402, DIN/ISO: G402, option 17) 15.9 ROTATION DE BASE via deux tenons (cycle 402, DIN/ISO: G402, option 17) Mode opératoire du cycle Le cycle palpeur 402 permet d'acquérir le centre de deux tenons. La commande calcule ensuite l'angle entre l'axe principal du plan d'usinage et la droite qui fait la liaison entre les centres des tenons. La commande utilise la fonction Rotation de base pour compenser la valeur calculée. En alternative, vous pouvez aussi compenser le désalignement déterminé par une rotation du plateau circulaire. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au point de palpage 1 du premier tenon, selon la logique de positionnement définie (voir "Exécuter les cycles palpeurs", Page 389). 2 Le palpeur se déplace ensuite à la hauteur de mesure programmée 1 et enregistre le centre du premier tenon en palpant quatre fois. Entre les points de palpage décalés de 90°, le palpeur se déplace sur un arc de cercle. 3 Puis, le palpeur retourne à la hauteur de sécurité et se positionne au point de palpage 5 du second tenon. 4 La commande amène le palpeur à la hauteur de mesure 2 programmée et enregistre le deuxième centre du tenon en palpant quatre fois. 5 Pour terminer, la commande retire le palpeur à la hauteur de sécurité et exécute la rotation de base calculée. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 429 15 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE via deux tenons (cycle 402, DIN/ISO: G402, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. La commande réinitialise une rotation de base active en début de cycle. Si vous souhaitez compenser l'erreur d'alignement par une rotation du plateau circulaire, la commande utilise alors automatiquement les axes rotatifs suivants : C avec axe d’outil Z B avec l'axe d'outil Y A avec axe d’outil X 430 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE via deux tenons (cycle 402, DIN/ISO: G402, option 17) Paramètres du cycle Q268 1er tenon: centre sur 1er axe? (en absolu) : centre du premier tenon dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q269 1er tenon: centre sur 2ème axe? (en absolu) : centre du premier tenon dans l'axe secondaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q313 Diamètre tenon 1? : diamètre approximatif du 1er tenon. Préférer une valeur trop grande à une valeur trop petite. Plage de programmation : 0 à 99999,9999 Q261 Haut. mes. tenon 1 dans axe TS? (en absolu) : coordonnée du centre de la bille (=point de contact) sur l'axe de palpage sur lequel la mesure du tenon 1 doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q270 2ème tenon: centre sur 1er axe? (en absolu) : centre du deuxième tenon sur l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q271 2ème tenon: centre sur 2ème axe? (en absolu) : centre du deuxième tenon sur l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q314 Diamètre tenon 2? : diamètre approximatif du 2e tenon. Préférer une valeur trop grande à une valeur trop petite. Plage de programmation : 0 à 99999,9999 Q315 Haut. mesure tenon 2 sur axe TS? (en absolu) : coordonnée du centre de la bille (=point de contact) sur l'axe de palpage sur lequel la mesure du tenon 2 doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Exemple 5 TCH PROBE 402 ROT AVEC 2 TENONS Q268=-37 ;1ER CENTRE 1ER AXE Q269=+12 ;1ER CENTRE 2EME AXE Q313=60 ;DIAMETRE TENON 1 Q261=-5 ;HAUT. MESURE 1 Q270=+75 ;2EME CENTRE 1ER AXE Q271=+20 ;2EME CENTRE 2EME AXE Q314=60 ;DIAMETRE TENON 2 Q315=-5 ;HAUT. MESURE 2 Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q307=0 ;PRESEL. ANGLE ROT. Q305=0 ;NO. DANS TABLEAU Q402=0 ;COMPENSATION Q337=0 ;INITIALIS. A ZERO Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 431 15 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE via deux tenons (cycle 402, DIN/ISO: G402, option 17) Q307 Présélection angle de rotation (en absolu) : si le désalignement à mesurer ne se trouve pas sur l'axe principal mais sur une ligne droite, entrer l'angle de la droite de référence. La commande détermine ensuite, pour la rotation de base, la différence entre la valeur mesurée et l'angle de la droite de référence. Plage de programmation : -360,000 à 360,000 Q305 Numéro dans tableau? Indiquez le numéro d'une ligne du tableau de points d'origine. La commande effectue alors l'enregistrement correspondant sur cette ligne : plage de programmation comprise entre 0 et 99 999 Q305 = 0 : l'axe rotation est mis à zéro à la ligne 0 du tableau de points d'origine. Un enregistrement est donc effectué dans la colonne OFFSET. (Exemple : pour l’axe d’outil Z, l’enregistrement se fait dans C_OFFS.) De plus, toutes les autres valeurs (X, Y, Z, etc.) du point d’origine actif sont reprises à la ligne 0 du tableau de points d’origine. Le point d’origine est en outre activé à la ligne 0. Q305 > 0 : l’axe rotatif est mis à zéro sur la ligne ici indiquée du tableau de points d’origine. Un enregistrement est donc effectué dans la colonne OFFSET correspondante du tableau de points d’origine. (Exemple : pour l’axe d’outil Z, l’enregistrement se fait dans C_OFFS.) Q305 dépend des paramètres suivants : Q337 = 0 et simultanément Q402 = 0 : une rotation de base est définie à la ligne indiquée avec Q305. (Exemple : pour l'axe d'outil Z, la rotation de base est enregistrée dans la colonne SPC) Q337 = 0 et simultanément Q402 = 1 : le paramètre Q305 n'a aucun effet. Q337 = 1 : le paramètre Q305 agit comme décrit plus haut. 432 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | ROTATION DE BASE via deux tenons (cycle 402, DIN/ISO: G402, option 17) Q402 Rotation base/alignement (0/1) : vous définissez ici si la commande doit définir le désalignement déterminé comme rotation de base ou compenser le désalignement par rotation de la table : 0 : définir la rotation de base : la commande mémorise la rotation de base (exemple : pour l'axe d’outil Z, la commande utilise la colonne SPC) 1 : tourner la table rotative : un enregistrement s'effectue à la colonne Offset du tableau de points d’origine (exemple : pour l’axe d’outil Z, la commande utilise la colonne C_Offs) et l'axe concerné pivote Q337 Init. à zéro après dégauchissage : vous définissez ici si la commande doit afficher les positions de l'axe rotatif concerné par rapport à 0 : 0 : après l'alignement, l'affichage des position n'est pas mis à 0 1 : après l'alignement, l'affichage des positions est mis à 0, si vous avez défini Q402=1 au préalable HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 433 15 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Compenser une ROTATION DE BASE via un axe rotatif (cycle 403, DIN/ISO : G403, option 17) 15.10 Compenser une ROTATION DE BASE via un axe rotatif (cycle 403, DIN/ISO : G403, option 17) Mode opératoire du cycle Le cycle palpeur 403 mesure deux points qui se trouvent sur une droite pour déterminer le désalignement de la pièce. La commande compense le désalignement de la pièce au moyen d'une rotation de l'axe A, B ou C. La pièce peut être fixée n'importe où sur le plateau circulaire. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au point de palpage programmé 1, selon la logique de positionnement définie (voir "Exécuter les cycles palpeurs", Page 389). La commande décale alors le palpeur de la valeur de la distance d'approche, dans le sens opposé au sens de déplacement défini. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée 3 Puis, le palpeur se rend au point de palpage suivant 2 et exécute la deuxième opération de palpage. 4 La commande retire le palpeur à la hauteur de sécurité et fait tourner l'axe rotatif défini dans le cycle de la valeur déterminée. Si vous le souhaitez (facultatif), vous pouvez également définir si la commande doit mettre l'angle de rotation déterminé à 0 dans le tableau de points d'origine ou dans le tableau de points zéro. 434 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Compenser une ROTATION DE BASE via un axe rotatif (cycle 403, DIN/ISO : G403, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si commande positionne automatiquement l'axe rotatif, cela risque d'engendrer une collision. Faire attention aux collisions possibles entre l’outil et les éléments éventuellement installés sur la table Choisir la hauteur de sécurité de manière à exclure toute collision REMARQUE Attention, risque de collision ! Si vous entrez la valeur 0 au paramètre Q312 Axe pour déplacement compensat.?, le cycle détermine automatiquement l’axe rotatif à aligner (paramétrage recommandé). Un angle est déterminé en fonction de l'ordre des points de palpage. L'angle déterminé est compris entre le premier et le deuxième point de palpage. Si vous choisissez l'axe A, B ou C comme axe de compensation au paramètre Q312, le cycle détermine l'angle indépendamment de l'ordre des points de palpage. L'angle calculé est compris entre -90 et +90°. Vérifiez la position de l'axe rotatif après l'alignement ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 435 15 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Compenser une ROTATION DE BASE via un axe rotatif (cycle 403, DIN/ISO : G403, option 17) Paramètres du cycle Q263 1er point mesure sur 1er axe? (en absolu) : coordonnée du premier point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q264 1er point mesure sur 2ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q265 2ème point mesure sur 1er axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q266 2ème point mesure sur 2ème axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe auxiliaire du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q272 Axe mes. (1...3, 1=axe princ.)? : axe sur lequel la mesure doit être effectuée : 1 : axe principal = axe de mesure 2 : axe auxiliaire = axe de mesure 3 : axe du palpeur = axe de mesure Q267 Sens déplacement 1 (+1=+/-1=-)? : sens dans lequel le palpeur doit s’approcher de la pièce : -1 : sens de déplacement négatif +1 : sens de déplacement positif Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure 436 Exemple 5 TCH PROBE 403 ROT SUR AXE ROTATIF Q263=+0 ;1ER POINT 1ER AXE Q264=+0 ;1ER POINT 2EME AXE Q265=+20 ;2EME POINT 1ER AXE Q266=+30 ;2EME POINT 2EME AXE Q272=1 ;AXE DE MESURE Q267=-1 ;SENS DEPLACEMENT Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q312=0 ;AXE DE COMPENSATION Q337=0 ;INITIALIS. A ZERO Q305=1 ;NO. DANS TABLEAU Q303=+1 ;TRANSF. VAL. MESURE Q380=+90 ;ANGLE DE REFERENCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Compenser une ROTATION DE BASE via un axe rotatif (cycle 403, DIN/ISO : G403, option 17) Q312 Axe pour déplacement compensat.? : vous définissez ici l'axe avec lequel la TNC doit compenser le désalignement mesuré : 0 : mode Automatique – la commande détermine l'axe rotatif à orienter à l'aide de la cinématique active. En mode automatique, le premier axe rotatif de la table (en partant de la pièce) est utilisé comme axe de compensation. Configuration recommandée ! 4 : compenser le désalignement avec l'axe rotatif A 5 : compenser le désalignement avec l'axe rotatif B 6 : compenser le désalignement avec l'axe rotatif C Q337 Init. à zéro après dégauchissage : vous définissez ici si la commande doit, ou non, définir l'angle de l'axe rotatif dans le tableau de presets ou dans le tableau de points zéro après l'alignement. 0 : ne pas mettre l'angle de l'axe rotatif à 0 dans le tableau 1 : mettre l'angle de l'axe rotatif à 0 après orientation Q305 Numéro dans tableau? Indiquer le numéro dans le tableau de points d'origine sous lequel la rotation de base doit être enregistrée. Plage de programmation : 0 à 99999 Q305 = 0 : l’axe rotatif est mis à zéro au numéro 0 du tableau de points d’origine. Un enregistrement a lieu dans la colonne OFFSET. De plus, toutes les autres valeurs (X, Y,Z, etc.) du point d’origine actif sont reprises à la ligne 0 du tableau de points d’origine. Le point d’origine est en outre activé à la ligne 0. Q305 > 0 : indiquer la ligne du tableau de points d'origine sous lequel la commande doit mettre l'axe rotatif à zéro. Un enregistrement a lieu dans la colonne OFFSET du tableau de points d’origine. Q305 dépend des paramètres suivants : Q337 = 0 Le paramètre Q305 n'a aucun effet. Q337 = 1 Le paramètre Q305 agit comme décrit plus haut. Q312 = 0: Le paramètre Q305 agit comme décrit plus haut. Q312 > 0: La valeur enregistrée à Q305 est ignorée. Un enregistrement a lieu dans la colonne OFFSET à la ligne du tableau de points d’origine qui a été activé lors de l’appel du cycle. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 437 15 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Compenser une ROTATION DE BASE via un axe rotatif (cycle 403, DIN/ISO : G403, option 17) Q303 Transfert val. mesure (0,1)? : vous définissez si le point d'origine déterminé doit être, ou non, mémorisé dans le tableau de points zéro ou dans le tableau de points d'origine : 0 : inscrire le point d'origine comme décalage de point zéro dans le tableau de points zéro. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point de référence déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). Q380 Angle réf. axe princip.? : angle selon lequel la commande doit orienter la droite palpée. N’agit que si le Mode automatique ou l'axe C est choisi pour l'axe rotatif (Q312 = 0 ou 6). Plage de programmation : 0 à 360,000 438 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Rotation via l'axe C (cycle 405, DIN/ISO : G405, option 17) 15.11 Rotation via l'axe C (cycle 405, DIN/ISO : G405, option 17) Mode opératoire du cycle Le cycle palpeur 405 permet de déterminer : le décalage angulaire entre l'axe Y positif du système de coordonnées actif et la ligne médiane d'un perçage le décalage angulaire entre la position nominale et la position effective du centre d'un trou La commande compense le décalage angulaire déterminé par une rotation de l'axe C. La pièce peut être serrée n'importe où sur le plateau circulaire. Toutefois, la coordonnée Y du trou doit être positive. Si vous mesurez le décalage angulaire du trou avec l'axe Y du palpeur (position horizontale du trou), il est parfois indispensable d'exécuter plusieurs fois le cycle. En effet, une imprécision d'environ 1% du désalignement résulte de la stratégie de la mesure. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement "Exécuter les cycles palpeurs". La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée. La commande détermine automatiquement le sens du palpage en fonction de l'angle de départ programmé. 3 Le palpeur suit ensuite une trajectoire circulaire, soit à la hauteur de mesure, soit à la hauteur de sécurité, pour se positionner au point de palpage suivant 2 où il exécute la deuxième opération de palpage. 4 La commande positionne le palpeur au point de palpage 3, puis au point de palpage 4 où il exécute respectivement la troisième et la quatrième opération de palpage ; elle positionne ensuite le palpeur au centre de trou déterminé. 5 Pour finir, la commande ramène le palpeur à la hauteur de sécurité et aligne la pièce en faisant pivoter le plateau circulaire. La commande fait alors pivoter le plateau circulaire de manière à ce que le centre du trou se trouve après compensation - avec l'axe vertical ou horizontal de palpage - sur l'axe Y positif ou à la position nominale du centre de trou. La valeur angulaire mesurée est également disponible dans le paramètre Q150. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 439 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Rotation via l'axe C (cycle 405, DIN/ISO : G405, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si les dimensions de la poche et la distance d'approche ne permettent pas d'effectuer un prépositionnement à proximité des points de palpage, la commande procède toujours au palpage en partant du centre de la poche. Dans ce cas, le palpeur ne se déplace pas à la hauteur de sécurité entre les quatre points de mesure. La poche/le trou doit être exempt(e) de matière. Pour éviter toute collision entre le palpeur et la pièce, introduisez le diamètre nominal de la poche (trou) de manière à ce qu'il soit plutôt plus petit. REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Plus l'incrément angulaire programmé est petit et moins le centre de cercle calculé par la commande sera précis. Valeur de saisie minimale : 5° 440 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Rotation via l'axe C (cycle 405, DIN/ISO : G405, option 17) Paramètres du cycle Q321 Centre 1er axe? (en absolu) : centre du trou dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q322 Centre 2ème axe? (en absolu) : centre du trou dans l'axe auxiliaire du plan d'usinage. Si vous programmez Q322 = 0, la commande aligne le centre du trou sur l'axe Y positif. Si vous programmez une valeur différente de 0 à Q322, la commande aligne le centre du trou sur la position nominale (angle résultant du centre du trou). Plage de programmation : -99999,9999 à 99999,9999 Q262 Diamètre nominal? : diamètre approximatif de la poche circulaire (trou). De préférence, entrer une valeur plutôt trop petite que trop grande. Plage de programmation : 0 à 99999,9999 Q325 Angle initial? (en absolu) : angle entre l'axe principal du plan d'usinage et le premier point de palpage. Plage de programmation : -360,000 à 360,000 Q247 Incrément angulaire? (en incrémental) : angle compris entre deux points de mesure ; le signe de l'incrément angulaire détermine le sens de rotation (- = sens horaire) pour le déplacement du palpeur vers le point de mesure suivant. Si vous souhaitez mesurer des secteurs circulaires, programmez un incrément angulaire inférieur à 90°. Plage de programmation : -120,000 à 120,000 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 405 ROT SUR AXE C Q321=+50 ;CENTRE 1ER AXE Q322=+50 ;CENTRE 2EME AXE Q262=10 ;DIAMETRE NOMINAL Q325=+0 ;ANGLE INITIAL Q247=90 ;INCREMENT ANGULAIRE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q337=0 ;INITIALIS. A ZERO 441 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Rotation via l'axe C (cycle 405, DIN/ISO : G405, option 17) Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q337 Init. à zéro après dégauchissage : 0 : mettre à 0 l'affichage de l'axe C et définir C_Offset de la ligne active du tableau de points zéro >0 : inscrire le décalage angulaire mesuré dans le tableau de points zéro. Numéro de ligne = valeur de Q337. Si un décalage C est déjà inscrit dans le tableau de points zéro, la commande additionne le décalage angulaire mesuré en tenant compte du signe. 442 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | DEFINIR ROTATION DE BASE (cycle 404, DIN/ISO : G404, option 17) 15.12 DEFINIR ROTATION DE BASE (cycle 404, DIN/ISO : G404, option 17) Mode opératoire du cycle Avec le cycle palpeur 404, vous pouvez définir automatiquement la rotation de base de votre choix pendant l'exécution de programme ou bien enregistrer la rotation de base de votre choix dans le tableau de points d'origine. Vous pouvez également utiliser le cycle 404 lorsque vous voulez réinitialiser une rotation de base active. Exemple 5 TCH PROBE 404 INIT. ROTAT. DE BASE Q307=+0 ;PRESEL. ANGLE ROT. Q305=-1 ;NO. DANS TABLEAU REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Paramètres du cycle Q307 Présélection angle de rotation : valeur angulaire avec laquelle la rotation de base doit être activée. Plage de programmation : -360,000 à 360,000 Q305 Numéro preset dans tableau? : indiquer le numéro du tableau de points d'origine sous lequel la commande doit mémoriser la rotation de base déterminée. Plage de programmation : -1 à 99999. Si Q305=0 ou Q305=-1, la commande mémorise également la rotation de base déterminée dans le menu de rotation de base (Palpage Rot) en mode Manuel. -1 = écraser et activer le point d'origine actif 0 = copier le point d'origine actif à la ligne de point d'origine 0 et activer le point d'origine 0 >1 = mémoriser la rotation de base au point d'origine indiqué. Le point d'origine n'est pas activé. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 443 15 15 Cycles palpeurs : déterminer automatiquement l'erreur d'alignement de la pièce | Exemple : déterminer la rotation de base à l'aide de deux trous 15.13 Exemple : déterminer la rotation de base à l'aide de deux trous 0 BEGIN P GM CYC401 MM 1 TOOL CALL 69 Z 2 TCH PROBE 401 ROT 2 TROUS Q268=+25 ;1ER CENTRE 1ER AXE Centre du 1er trou : coordonnée X Q269=+15 ;1ER CENTRE 2EME AXE Centre du 1er trou : coordonnée Y Q270=+80 ;2EME CENTRE 1ER AXE Centre du 2ème trou : coordonnée X Q271=+35 ;2EME CENTRE 2EME AXE Centre du 2ème trou : coordonnée Y Q261=-5 ;HAUTEUR DE MESURE Coordonnée à laquelle est effectuée la mesure, sur l'axe de palpage Q260=+20 ;HAUTEUR DE SECURITE Hauteur à laquelle l'axe de palpage peut se déplacer sans risque de collision Q307=+0 ;PRESEL. ANGLE ROT. Angle de la droite de référence Q305=0 ;NO. DANS TABLEAU Q402=1 ;COMPENSATION Compenser le désalignement par rotation du plateau circulaire Q337=1 ;INITIALIS. A ZERO Après l'alignement, initialiser l'affichage à zéro 3 CALL PGM 35K47 Appeler le programme d'usinage 4 END PGM CYC401 MM 444 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine 16 Cycles palpeurs : initialisation automatique des points d'origine | Principes de base 16.1 Principes de base Vue d'ensemble La commande propose douze cycles qui vous permettent de déterminer automatiquement des points d'origine et que vous pouvez utiliser pour : Initialiser les valeurs déterminées directement dans l'affichage inscrire des valeurs déterminées dans le tableau de points d'origine inscrire des valeurs déterminées dans un tableau de points zéro Softkey 446 Cycle Page 410 PT REF. INT. RECTAN Mesure intérieure de la longueur et de la largeur d'un rectangle, initialiser le centre du rectangle comme point d'origine 450 411 PT REF. EXT. RECTAN Mesure extérieure de la longueur et de la largeur d'un rectangle, initialiser le centre du rectangle comme point d'origine 454 412 PT REF. INT. CERCLE Mesure intérieure de 4 points au choix sur le cercle, initialiser le centre du cercle comme point d'origine 458 413 PT REF. EXT. CERCLE Mesure extérieure de 4 points au choix sur le cercle, initialiser le centre du cercle comme point d'origine 463 414 PT REF. EXT. COIN Mesure extérieure de 2 droites, initialiser le point d'intersection comme point d'origine 468 415 PT REF. INT. COIN Mesure intérieure de 2 droites, initialiser le point d'intersection comme point d'origine 473 416 PT REF CENT. C.TROUS (2ème niveau de softkeys) mesurer trois trous au choix sur le cercle de trous ; initialiser le centre du cercle de trous comme point d'origine 478 417 PT REF DANS AXE PALP (2ème barre de softkeys) Mesure de la position de votre choix sur l'axe de palpage et définition comme point d'origine 483 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | Principes de base Softkey Cycle Page 418 PT REF AVEC 4 TROUS (2ème barre de softkeys) mesurer chaque fois 2 trous en croix et initialiser le point d'intersection des deux droites de liaison comme point d'origine 486 419 PT DE REF SUR UN AXE (2ème barre de softkeys) mesurer une position au choix sur un axe au choix et l'initialiser comme point d'origine 491 408 PT REF CENTRE RAINURE Mesure intérieure de la largeur d’une rainure, initialiser le centre de la rainure comme point d'origine 494 409 PT REF CENTRE TRAVERSE Mesure extérieure de la largeur d’une traverse, définir le centre de la traverse comme point d'origine 499 La CN doit avoir été préparée par le constructeur de la machine pour l'utilisation du palpeur 3D. HEIDENHAIN ne garantit le fonctionnement correct des cycles de palpage qu'avec les palpeurs HEIDENHAIN. En fonction de ce qui a été programmé au paramètre machine optionnel CfgPresetSettings (n°204600), la commande vérifie lors du palpage si la position de l'axe rotation correspond aux angles d'inclinaison ROT 3D. Si ce n'est pas le cas, la commande émet un message d'erreur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 447 16 Cycles palpeurs : initialisation automatique des points d'origine | Principes de base Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine Vous pouvez exécuter les cycles palpeurs 408 à 419 même si la rotation de base est activée (rotation de base ou cycle 10). Point d'origine et axe de palpage La commande définit le point d'origine dans le plan d'usinage en fonction de l'axe de palpage que vous avez défini dans votre programme de mesure. Axe de palpage actif Définition du point d'origine sur Z X et Y Y Z et X X Y et Z Mémoriser le point d'origine calculé Dans tous les cycles de définition de points d'origine, vous pouvez vous servir des paramètres de programmation Q303 et Q305 pour définir comment la commande doit mémoriser le point d'origine calculé : Q305 = 0, Q303 = 1 : Le point d'origine actif est copié à la ligne 0 et active la ligne 0, supprimant alors les transformations simples. Q305 différent de 0, Q303 = 0: Le résultat s'inscrit à la ligne Q305 du tableau de points zéro. Activer le point zéro avec le cycle 7 dans le programme CN Q305 différent de 0, Q303 = 1 : Le résultat s'inscrit à la ligne Q305 du tableau de points d'origine ; le système de référence est le système de coordonnées machine (coordonnées REF). Le point d'origine doit être activé avec le cycle 247 dans le programme CN. Q305 différent de 0, Q303 = -1 Cette combinaison ne peut exister que si vous importez des programmes CN avec des cycles 410 à 418 qui ont été créés sur une TNC 4xx vous importez des programmes CN avec des cycles 410 à 418 qui ont été créés avec une version logicielle antérieure de l'iTNC 530 si vous n'avez pas sciemment défini le paramètre Q303 pour le transfert des valeurs de mesure au moment de définir le cycle Dans de tels cas, la TNC délivre un message d'erreur ; en effet, le processus complet en liaison avec les tableaux de points zéro (coordonnées REF) a été modifié et vous devez définir un transfert de valeurs de mesure avec le paramètre Q303. 448 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | Principes de base Résultats de la mesure dans les paramètres Q La commande mémorise les résultats de mesure du cycle de palpage concerné aux paramètres Q qui ont un effet global, Q150 à Q160. Vous pouvez continuer à utiliser ces paramètres dans votre programme CN. Tenez compte du tableau des paramètres de résultat associé à chaque définition de cycle. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 449 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE RECTANGLE INTERIEUR (cycle 410, DIN/ISO : G410, option 17) 16.2 POINT D'ORIGINE RECTANGLE INTERIEUR (cycle 410, DIN/ISO : G410, option 17) Mode opératoire du cycle Le cycle palpeur 410 détermine le centre d'une poche rectangulaire et le définit comme point d'origine. La commande peut inscrire le centre, au choix, dans un tableau de points zéro ou dans un tableau de points d'origine. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement "Exécuter les cycles palpeurs". La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée 3 Puis, le palpeur se déplace soit paraxialement à la hauteur de mesure, soit linéairement à la hauteur de sécurité, jusqu'au point de palpage suivant 2 où il exécute la deuxième opération de palpage. 4 La commande positionne le palpeur au point de palpage 3 , puis au point de palpage 4 . Là, elle procède à la troisième et à la quatrième procédure de palpage. 5 Pour terminer, la commande retire le palpeur à la hauteur de sécurité et traite le point de référence calculé conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305. (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 6 Si vous le souhaitez, la commande calcule ensuite également le point d'origine sur l'axe du palpeur avec une procédure de palpage distincte et mémorise les valeurs effectives aux paramètres Q ci-après. Numéros de paramètres Signification Q151 Valeur effective centre, axe principal Q152 Valeur effective centre, axe secondaire Q154 Valeur effective longueur latérale, axe principal Q155 Valeur effective longueur latérale, axe auxiliaire 450 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE RECTANGLE INTERIEUR (cycle 410, DIN/ISO : G410, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées REMARQUE Attention, risque de collision ! Pour éviter toute collision entre le palpeur et la pièce, programmez le 1er et le 2ème côté de la poche de manière à ce qu'ils soient plutôt plus petits. Si les dimensions de la poche et la distance d'approche ne permettent pas d'effectuer un prépositionnement à proximité des points de palpage, la commande procède toujours au palpage en partant du centre de la poche. Dans ce cas, le palpeur ne se déplace pas à la hauteur de sécurité entre les quatre points de mesure. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 451 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE RECTANGLE INTERIEUR (cycle 410, DIN/ISO : G410, option 17) Paramètres du cycle Q321 Centre 1er axe? (en absolu) : centre de la poche dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q322 Centre 2ème axe? (en absolu) : centre de la poche dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q323 Longueur premier côté? (en incrémental) : longueur de la poche, parallèlement à l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q324 Longueur second côté? (en incrémental) : longueur de la poche parallèlement à l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q305 Numéro dans tableau? : entrer le numéro de la ligne du tableau de points zéro/tableau de points d’origine sous lequel la commande doit mémoriser les coordonnées du centre. Plage de programmation : 0 à 9999. En fonction de ce que vous avez défini à Q303, la commande procède à l'enregistrement soit dans le tableau de points d'origine soit dans le tableau de points zéro: Si Q303 = 1, la commande utilise le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. 452 Exemple 5 TCH PROBE 410 PT REF. INT. RECTAN. Q321=+50 ;CENTRE 1ER AXE Q322=+50 ;CENTRE 2EME AXE Q323=60 ;1ER COTE Q324=20 ;2EME COTE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q305=10 ;NO. DANS TABLEAU Q331=+0 ;POINT DE REFERENCE Q332=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. Q384=+0 ;3.COO.POUR AXE PALP. Q333=+1 ;POINT DE REFERENCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE RECTANGLE INTERIEUR (cycle 410, DIN/ISO : G410, option 17) Q331 Nouv. pt de réf. axe principal? (en absolu) : coordonnée dans l'axe principal à laquelle la commande doit définir le centre déterminé pour la poche. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q332 Nouv. pt de réf. sur axe auxil.? (en absolu) : coordonnée de l'axe auxiliaire à laquelle la commande doit définir le centre déterminé pour la poche. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez ici si le point d'origine déterminé doit être sauvegardé dans le tableau de points zéro ou dans le tableau de presets : -1 : ne pas utiliser ! Inscrit par la CN lors de l'importation d'anciens programmes CN(voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 0: Inscrire le point d'origine déterminé dans le tableau de points zéro actifs. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point d'origine déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). Q381 Palpage dans axe palpeur? (0/1) : vous définissez ici si la commande doit également définir le point d'origine sur l'axe de palpage : 0 : ne pas activer le point d'origine dans l'axe de palpage 1 : définir le point d'origine sur l'axe de palpage Q382 Palp. axe palp.: Coord. 1er axe? (en absolu) : coordonnée du point de palpage dans l'axe principal du plan d'usinage à laquelle le point de référence doit être initialisé dans l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q383 Palp. axe palp.: Coor. 2ème axe? (en absolu) : coordonnée du point de palpage sur l'axe auxiliaire du plan d'usinage dans lequel le point d'origine doit être définir sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q384 Palp. axe palp.: Coor. 3ème axe? (en absolu) : coordonnée du point de palpage sur l'axe de palpage à laquelle le point d'origine doit être défini sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 453 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE RECTANGLE EXTERIEUR (cycle 411, DIN/ISO : G411, option 17) 16.3 POINT D'ORIGINE RECTANGLE EXTERIEUR (cycle 411, DIN/ISO : G411, option 17) Mode opératoire du cycle Le cycle palpeur 411 détermine le centre d'un tenon rectangulaire et le définit comme point d'origine. La commande peut inscrire le centre, au choix, dans un tableau de points zéro ou dans un tableau de points d'origine. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389). La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée 3 Puis, le palpeur se déplace soit paraxialement à la hauteur de mesure, soit linéairement à la hauteur de sécurité, jusqu'au point de palpage suivant 2 où il exécute la deuxième opération de palpage. 4 La commande positionne le palpeur au point de palpage 3 , puis au point de palpage 4 . Là, elle procède à la troisième et à la quatrième procédure de palpage. 5 Pour terminer, la commande retire le palpeur à la hauteur de sécurité et traite le point de référence calculé conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305. (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 6 Si vous le souhaitez, la commande calcule ensuite également le point d'origine sur l'axe du palpeur avec une procédure de palpage distincte et mémorise les valeurs effectives aux paramètres Q ci-après. Numéros de paramètres Signification Q151 Valeur effective centre, axe principal Q152 Valeur effective centre, axe secondaire Q154 Valeur effective longueur latérale, axe principal Q155 Valeur effective longueur latérale, axe auxiliaire 454 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE RECTANGLE EXTERIEUR (cycle 411, DIN/ISO : G411, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées REMARQUE Attention, risque de collision ! Pour éviter toute collision entre le palpeur et la pièce, programmez le 1er et le 2ème côté du tenon de manière à ce qu'ils soient plutôt plus grands. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 455 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE RECTANGLE EXTERIEUR (cycle 411, DIN/ISO : G411, option 17) Paramètres du cycle Q321 Centre 1er axe? (en absolu) : centre du tenon dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q322 Centre 2ème axe? (en absolu) : centre du tenon dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q323 Longueur premier côté? (en incrémental) : longueur du tenon, parallèle à l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q324 Longueur second côté? (en incrémental) : longueur du tenon, parallèle à l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q305 Numéro dans tableau? : entrer le numéro de la ligne du tableau de points zéro/tableau de points d’origine sous lequel la commande doit mémoriser les coordonnées du centre. Plage de programmation : 0 à 9999. En fonction de ce que vous avez défini à Q303, la commande procède à l'enregistrement soit dans le tableau de points d'origine soit dans le tableau de points zéro: Si Q303 = 1, la commande utilise le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. 456 Exemple 5 TCH PROBE 411 PT REF. EXT. RECTAN. Q321=+50 ;CENTRE 1ER AXE Q322=+50 ;CENTRE 2EME AXE Q323=60 ;1ER COTE Q324=20 ;2EME COTE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q305=0 ;NO. DANS TABLEAU Q331=+0 ;POINT DE REFERENCE Q332=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. Q384=+0 ;3.COO.POUR AXE PALP. Q333=+1 ;POINT DE REFERENCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE RECTANGLE EXTERIEUR (cycle 411, DIN/ISO : G411, option 17) Q331 Nouv. pt de réf. axe principal? (en absolu) : coordonnée dans l'axe principal à laquelle la commande doit définir le centre déterminé pour le tenon. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q332 Nouv. pt de réf. sur axe auxil.? (en absolu) : coordonnée de l'axe auxiliaire à laquelle la commande doit définir le centre déterminé pour le tenon. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez ici si le point d'origine déterminé doit être sauvegardé dans le tableau de points zéro ou dans le tableau de presets : -1 : ne pas utiliser ! Inscrit par la CN lors de l'importation d'anciens programmes CN(voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 0: Inscrire le point d'origine déterminé dans le tableau de points zéro actifs. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point d'origine déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). Q381 Palpage dans axe palpeur? (0/1) : vous définissez ici si la commande doit également définir le point d'origine sur l'axe de palpage : 0 : ne pas activer le point d'origine dans l'axe de palpage 1 : définir le point d'origine sur l'axe de palpage Q382 Palp. axe palp.: Coord. 1er axe? (en absolu) : coordonnée du point de palpage dans l'axe principal du plan d'usinage à laquelle le point de référence doit être initialisé dans l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q383 Palp. axe palp.: Coor. 2ème axe? (en absolu) : coordonnée du point de palpage sur l'axe auxiliaire du plan d'usinage dans lequel le point d'origine doit être définir sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q384 Palp. axe palp.: Coor. 3ème axe? (en absolu) : coordonnée du point de palpage sur l'axe de palpage à laquelle le point d'origine doit être défini sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 457 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CERCLE INTERIEUR (cycle 412, DIN/ISO : G412, option 17) 16.4 POINT D'ORIGINE CERCLE INTERIEUR (cycle 412, DIN/ISO : G412, option 17) Mode opératoire du cycle Le cycle palpeur 412 détermine le centre d'une poche circulaire (trou) et le définit comme point d'origine. La commande peut inscrire le centre, au choix, dans un tableau de points zéro ou dans un tableau de points d'origine. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389). La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée. La commande détermine automatiquement le sens du palpage en fonction de l'angle de départ programmé. 3 Le palpeur suit ensuite une trajectoire circulaire, soit à la hauteur de mesure, soit à la hauteur de sécurité, pour se positionner au point de palpage suivant 2 où il exécute la deuxième opération de palpage. 4 La commande positionne le palpeur au point de palpage 3 , puis au point de palpage 4 . Là, elle procède à la troisième et à la quatrième procédure de palpage. 5 Pour terminer, la commande retire le palpeur à la hauteur de sécurité, traite le point de référence calculé conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305 (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) et mémorise les valeurs effective aux paramètres Q suivants. 6 Si vous le souhaitez, la commande détermine ensuite également le point d'origine de l'axe de palpage, avec une procédure de palpage distincte. Numéros de paramètres Signification Q151 Valeur effective centre, axe principal Q152 Valeur effective centre, axe secondaire Q153 Valeur effective diamètre 458 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CERCLE INTERIEUR (cycle 412, DIN/ISO : G412, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées REMARQUE Attention, risque de collision ! Pour éviter toute collision entre le palpeur et la pièce, introduisez le diamètre nominal de la poche (trou) de manière à ce qu'il soit plutôt plus petit. Si les dimensions de la poche et la distance d'approche ne permettent pas d'effectuer un prépositionnement à proximité des points de palpage, la commande effectue toujours le palpage en partant du centre de la poche. Dans ce cas, le palpeur ne se déplace pas à la hauteur de sécurité entre les quatre points de mesure. Positionnement des points de palpage Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Plus l'incrément angulaire programmé à Q247 est petit et moins le centre de cercle calculé par la commande sera précis. Valeur de saisie minimale : 5° Programmez un incrément angulaire inférieur à 90°, plage de saisie -120° - 120° HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 459 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CERCLE INTERIEUR (cycle 412, DIN/ISO : G412, option 17) Paramètres du cycle Q321 Centre 1er axe? (en absolu) : centre de la poche dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q322 Centre 2ème axe? (en absolu) : centre de la poche dans l'axe auxiliaire du plan d'usinage. Si vous programmez Q322 = 0, la commande aligne le centre du trou sur l'axe Y positif, si vous programmez Q322 différent de 0, la commande aligne le centre du trou sur la position nominale. Plage de programmation : -99999,9999 à 99999,9999 Q262 Diamètre nominal? : diamètre approximatif de la poche circulaire (trou). De préférence, entrer une valeur plutôt trop petite que trop grande. Plage de programmation : 0 à 99999,9999 Q325 Angle initial? (en absolu) : angle entre l'axe principal du plan d'usinage et le premier point de palpage. Plage de programmation : -360,000 à 360,000 Q247 Incrément angulaire? (en incrémental) : angle compris entre deux points de mesure ; le signe de l'incrément angulaire détermine le sens de rotation (- = sens horaire) pour le déplacement du palpeur vers le point de mesure suivant. Si vous souhaitez mesurer des secteurs circulaires, programmez un incrément angulaire inférieur à 90°. Plage de programmation : -120,000 à 120,000 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 460 Exemple 5 TCH PROBE 412 PT REF. INT. CERCLE Q321=+50 ;CENTRE 1ER AXE Q322=+50 ;CENTRE 2EME AXE Q262=75 ;DIAMETRE NOMINAL Q325=+0 ;ANGLE INITIAL Q247=+60 ;INCREMENT ANGULAIRE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q305=12 ;NO. DANS TABLEAU Q331=+0 ;POINT DE REFERENCE Q332=+0 ;POINT DE REFERENCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CERCLE INTERIEUR (cycle 412, DIN/ISO : G412, option 17) Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q305 Numéro dans tableau? : entrer le numéro de la ligne du tableau de points zéro/tableau de points d’origine sous lequel la commande doit mémoriser les coordonnées du centre. Plage de programmation : 0 à 9999. En fonction de ce que vous avez défini à Q303, la commande procède à l'enregistrement soit dans le tableau de points d'origine soit dans le tableau de points zéro: Si Q303 = 1, la commande utilise le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. Q331 Nouv. pt de réf. axe principal? (en absolu) : coordonnée dans l'axe principal à laquelle la commande doit définir le centre déterminé pour la poche. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q332 Nouv. pt de réf. sur axe auxil.? (en absolu) : coordonnée de l'axe auxiliaire à laquelle la commande doit définir le centre déterminé pour la poche. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez ici si le point d'origine déterminé doit être sauvegardé dans le tableau de points zéro ou dans le tableau de presets : -1 : ne pas utiliser ! Inscrit par la CN lors de l'importation d'anciens programmes CN(voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 0: Inscrire le point d'origine déterminé dans le tableau de points zéro actifs. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point d'origine déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q303=+1 ;TRANSF. VAL. MESURE Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. Q384=+0 ;3.COO.POUR AXE PALP. Q333=+1 ;POINT DE REFERENCE Q423=4 ;NOMBRE DE PALPAGES Q365=1 ;TYPE DEPLACEMENT 461 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CERCLE INTERIEUR (cycle 412, DIN/ISO : G412, option 17) Q381 Palpage dans axe palpeur? (0/1) : vous définissez ici si la commande doit également définir le point d'origine sur l'axe de palpage : 0 : ne pas activer le point d'origine dans l'axe de palpage 1 : définir le point d'origine sur l'axe de palpage Q382 Palp. axe palp.: Coord. 1er axe? (en absolu) : coordonnée du point de palpage dans l'axe principal du plan d'usinage à laquelle le point de référence doit être initialisé dans l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q383 Palp. axe palp.: Coor. 2ème axe? (en absolu) : coordonnée du point de palpage sur l'axe auxiliaire du plan d'usinage dans lequel le point d'origine doit être définir sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q384 Palp. axe palp.: Coor. 3ème axe? (en absolu) : coordonnée du point de palpage sur l'axe de palpage à laquelle le point d'origine doit être défini sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q423 Nombre de palpages plan (4/3)? : vous définissez ici si la commande doit mesurer le cercle en 4 ou 3 palpages : 4 : utiliser 4 points de mesure (paramètre standard) 3 : utiliser 4 points de mesure Q365 Type déplacement? ligne=0/arc=1 : vous définissez ici la fonction de contournage qui doit être utilisée pour déplacer l'outil entre les points de mesure, lorsque le déplacement se fait à la hauteur de sécurité(Q301=1) : 0 : déplacement en ligne droite entre chaque usinage 1 : déplacement en cercle, sur le diamètre du cercle primitif, entre chaque usinage 462 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CERCLE EXTERIEUR (cycle 413, DIN/ISO : G413, option 17) 16.5 POINT D'ORIGINE CERCLE EXTERIEUR (cycle 413, DIN/ISO : G413, option 17) Mode opératoire du cycle Le cycle palpeur 413 détermine le centre d'un tenon circulaire et le définit comme point d'origine. La commande peut inscrire le centre, au choix, dans un tableau de points zéro ou dans un tableau de points d'origine. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389). La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée. La commande détermine automatiquement le sens du palpage en fonction de l'angle de départ programmé. 3 Le palpeur suit ensuite une trajectoire circulaire, soit à la hauteur de mesure, soit à la hauteur de sécurité, pour se positionner au point de palpage suivant 2 où il exécute la deuxième opération de palpage. 4 La commande positionne le palpeur au point de palpage 3 , puis au point de palpage 4 . Là, elle procède à la troisième et à la quatrième procédure de palpage. 5 Pour terminer, la commande retire le palpeur à la hauteur de sécurité, traite le point de référence calculé conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305 (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) et mémorise les valeurs effective aux paramètres Q suivants. 6 Si vous le souhaitez, la commande détermine ensuite également le point d'origine de l'axe de palpage, avec une procédure de palpage distincte. Numéros de paramètres Signification Q151 Valeur effective centre, axe principal Q152 Valeur effective centre, axe secondaire Q153 Valeur effective diamètre HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 463 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CERCLE EXTERIEUR (cycle 413, DIN/ISO : G413, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées REMARQUE Attention, risque de collision ! Pour éviter toute collision entre le palpeur et la pièce, programmez le diamètre nominal du tenon de manière à ce qu'il soit plutôt trop grand. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Plus l'incrément angulaire programmé à Q247 est petit et moins le centre de cercle calculé par la commande sera précis. Valeur de saisie minimale : 5° Programmez un incrément angulaire inférieur à 90°, plage de saisie -120° - 120° 464 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CERCLE EXTERIEUR (cycle 413, DIN/ISO : G413, option 17) Paramètres du cycle Q321 Centre 1er axe? (en absolu) : centre du tenon dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q322 Centre 2ème axe? (en absolu) : centre du tenon dans l'axe auxiliaire du plan d'usinage. Si vous programmez Q322 = 0, la commande aligne le centre du trou sur l'axe Y positif, si vous programmez Q322 différent de 0, la commande aligne le centre du trou sur la position nominale. Plage de programmation : -99999,9999 à 99999,9999 Q262 Diamètre nominal? : diamètre approximatif du tenon. Privilégier une valeur trop élevée plutôt que trop petite. Plage de programmation : 0 à 99999,9999 Q325 Angle initial? (en absolu) : angle entre l'axe principal du plan d'usinage et le premier point de palpage. Plage de programmation : -360,000 à 360,000 Q247 Incrément angulaire? (en incrémental) : angle compris entre deux points de mesure ; le signe de l'incrément angulaire détermine le sens de rotation (- = sens horaire) pour le déplacement du palpeur vers le point de mesure suivant. Si vous souhaitez mesurer des secteurs circulaires, programmez un incrément angulaire inférieur à 90°. Plage de programmation : -120,000 à 120,000 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 413 PT REF. EXT. CERCLE Q321=+50 ;CENTRE 1ER AXE Q322=+50 ;CENTRE 2EME AXE Q262=75 ;DIAMETRE NOMINAL Q325=+0 ;ANGLE INITIAL Q247=+60 ;INCREMENT ANGULAIRE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q305=15 ;NO. DANS TABLEAU Q331=+0 ;POINT DE REFERENCE Q332=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. Q384=+0 ;3.COO.POUR AXE PALP. Q333=+1 ;POINT DE REFERENCE Q423=4 ;NOMBRE DE PALPAGES Q365=1 ;TYPE DEPLACEMENT 465 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CERCLE EXTERIEUR (cycle 413, DIN/ISO : G413, option 17) Q305 Numéro dans tableau? : entrer le numéro de la ligne du tableau de points zéro/tableau de points d’origine sous lequel la commande doit mémoriser les coordonnées du centre. Plage de programmation : 0 à 9999. En fonction de ce que vous avez défini à Q303, la commande procède à l'enregistrement soit dans le tableau de points d'origine soit dans le tableau de points zéro: Si Q303 = 1, la commande utilise le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. Q331 Nouv. pt de réf. axe principal? (en absolu) : coordonnée dans l'axe principal à laquelle la commande doit définir le centre déterminé pour le tenon. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q332 Nouv. pt de réf. sur axe auxil.? (en absolu) : coordonnée de l'axe auxiliaire à laquelle la commande doit définir le centre déterminé pour le tenon. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez ici si le point d'origine déterminé doit être sauvegardé dans le tableau de points zéro ou dans le tableau de presets : -1 : ne pas utiliser ! Inscrit par la CN lors de l'importation d'anciens programmes CN(voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 0: Inscrire le point d'origine déterminé dans le tableau de points zéro actifs. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point d'origine déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). Q381 Palpage dans axe palpeur? (0/1) : vous définissez ici si la commande doit également définir le point d'origine sur l'axe de palpage : 0 : ne pas activer le point d'origine dans l'axe de palpage 1 : définir le point d'origine sur l'axe de palpage 466 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CERCLE EXTERIEUR (cycle 413, DIN/ISO : G413, option 17) Q382 Palp. axe palp.: Coord. 1er axe? (en absolu) : coordonnée du point de palpage dans l'axe principal du plan d'usinage à laquelle le point de référence doit être initialisé dans l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q383 Palp. axe palp.: Coor. 2ème axe? (en absolu) : coordonnée du point de palpage sur l'axe auxiliaire du plan d'usinage dans lequel le point d'origine doit être définir sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q384 Palp. axe palp.: Coor. 3ème axe? (en absolu) : coordonnée du point de palpage sur l'axe de palpage à laquelle le point d'origine doit être défini sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q423 Nombre de palpages plan (4/3)? : vous définissez ici si la commande doit mesurer le cercle en 4 ou 3 palpages : 4 : utiliser 4 points de mesure (paramètre standard) 3 : utiliser 4 points de mesure Q365 Type déplacement? ligne=0/arc=1 : vous définissez ici la fonction de contournage qui doit être utilisée pour déplacer l'outil entre les points de mesure, lorsque le déplacement se fait à la hauteur de sécurité(Q301=1) : 0 : déplacement en ligne droite entre chaque usinage 1 : déplacement en cercle, sur le diamètre du cercle primitif, entre chaque usinage HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 467 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE COINS EXTERIEURS (cycle 414, DIN/ISO : G414, option 17) 16.6 POINT D'ORIGINE COINS EXTERIEURS (cycle 414, DIN/ISO : G414, option 17) Mode opératoire du cycle Le cycle palpeur 414 détermine le point d'intersection de deux droites et le définit comme point d'origine. La commande peut également inscrire le point d'intersection, au choix, dans le tableau de points zéro ou dans le tableau de points d'origine. 1 Le CN positionne le palpeur au premier point de palpage 1 (voir figure à droite) en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389). La CN décale alors le palpeur de la valeur de la distance d'approche dans le sens inverse du sens de déplacement appliqué. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée. La commande détermine automatiquement le sens de palpage en fonction du 3ème point de mesure programmé. 3 Le palpeur est ensuite amené au point de palpage 2 et exécuter la deuxième procédure de palpage. 4 La commande positionne le palpeur au point de palpage 3 , puis au point de palpage 4 . Là, elle procède à la troisième et à la quatrième procédure de palpage. 5 Pour terminer, la CN ramène le palpeur à la hauteur de sécurité, traite le point d'origine conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305 (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) et mémorise les coordonnées du coin déterminé aux paramètres Q suivants. 6 Si vous le souhaitez, la commande détermine ensuite également le point d'origine de l'axe de palpage, avec une procédure de palpage distincte. Numéros de paramètres Signification Q151 Valeur effective du coin dans l'axe principal Q152 Valeur effective du coin dans l'axe secondaire 468 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE COINS EXTERIEURS (cycle 414, DIN/ISO : G414, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. La commande mesure toujours la première droite dans le sens de l'axe auxiliaire du plan d'usinage. La position des points de mesure 1 et 3 permet de définir le coin au niveau duquel la commande définit le point d'origine (voir fig. de droite et tableau ci-après). Coin Coordonnée X Coordonnée Y A Point 1 supérieur point 3 Point 1 inférieur point 3 B Point 1 inférieur point 3 Point 1 inférieur point 3 C Point 1 inférieur point 3 Point 1 supérieur point 3 D Point 1 supérieur point 3 Point 1 supérieur point 3 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 469 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE COINS EXTERIEURS (cycle 414, DIN/ISO : G414, option 17) Paramètres du cycle Q263 1er point mesure sur 1er axe? (en absolu) : coordonnée du premier point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q264 1er point mesure sur 2ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q326 Distance 1er axe? (en incrémental) : distance entre le premier et le deuxième point de mesure sur l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q296 3ème point mesure sur 1er axe? (en absolu) : coordonnée du troisième point de palpage de l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q297 3ème point mesure sur 2ème axe? (en absolu) : coordonnée du troisième point de palpage de l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q327 Distance 2ème axe? (en incrémental) : distance entre le troisième et le quatrième point de mesure sur l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure 470 Exemple 5 TCH PROBE 414 PT REF. INT. COIN Q263=+37 ;1ER POINT 1ER AXE Q264=+7 ;1ER POINT 2EME AXE Q326=50 ;DISTANCE 1ER AXE Q296=+95 ;3EME POINT 1ER AXE Q297=+25 ;3EME POINT 2EME AXE Q327=45 ;DISTANCE 2EME AXE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q304=0 ;ROTATION DE BASE Q305=7 ;NO. DANS TABLEAU Q331=+0 ;POINT DE REFERENCE Q332=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE COINS EXTERIEURS (cycle 414, DIN/ISO : G414, option 17) Q304 Exécuter rotation de base (0/1)? : vous définissez ici si la commande doit compenser le désalignement de la pièce par une rotation de base : 0 : ne pas effectuer de rotation de base 1 : effectuer une rotation de base Q305 Numéro dans tableau? : indiquez le numéro de ligne du tableau de points d'origine/tableau de points zéro sous lequel la commande mémorise les coordonnées. Plage de programmation : 0 à 9999. En fonction de ce que vous avez défini à Q303, la commande procède à l'enregistrement soit dans le tableau de points d'origine soit dans le tableau de points zéro: Si Q303 = 1, la commande utilise le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. Q331 Nouv. pt de réf. axe principal? (en absolu) : coordonnée de l'axe principal à laquelle la commande doit définir le coin déterminé. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q332 Nouv. pt de réf. sur axe auxil.? (en absolu) : coordonnée de l'axe auxiliaire à laquelle la commande doit définir le coin déterminé. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez ici si le point d'origine déterminé doit être sauvegardé dans le tableau de points zéro ou dans le tableau de presets : -1 : ne pas utiliser ! Inscrit par la CN lors de l'importation d'anciens programmes CN(voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 0: Inscrire le point d'origine déterminé dans le tableau de points zéro actifs. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point d'origine déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). Q381 Palpage dans axe palpeur? (0/1) : vous définissez ici si la commande doit également définir le point d'origine sur l'axe de palpage : 0 : ne pas activer le point d'origine dans l'axe de palpage 1 : définir le point d'origine sur l'axe de palpage HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. Q384=+0 ;3.COO.POUR AXE PALP. Q333=+1 ;POINT DE REFERENCE 471 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE COINS EXTERIEURS (cycle 414, DIN/ISO : G414, option 17) Q382 Palp. axe palp.: Coord. 1er axe? (en absolu) : coordonnée du point de palpage dans l'axe principal du plan d'usinage à laquelle le point de référence doit être initialisé dans l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q383 Palp. axe palp.: Coor. 2ème axe? (en absolu) : coordonnée du point de palpage sur l'axe auxiliaire du plan d'usinage dans lequel le point d'origine doit être définir sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q384 Palp. axe palp.: Coor. 3ème axe? (en absolu) : coordonnée du point de palpage sur l'axe de palpage à laquelle le point d'origine doit être défini sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 472 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE COIN INTERIEUR (cycle 415, DIN/ISO : G415, option 17) 16.7 POINT D'ORIGINE COIN INTERIEUR (cycle 415, DIN/ISO : G415, option 17) Mode opératoire du cycle Le cycle palpeur 415 détermine le point d'intersection de deux droites et le définit comme point d'origine. La commande peut également inscrire le point d'intersection, au choix, dans le tableau de points zéro ou dans le tableau de points d'origine. 1 Le CN positionne le palpeur au premier point de palpage 1 (voir figure à droite) en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement "Exécuter les cycles palpeurs". La CN décale alors le palpeur de la valeur de la distance d'approche Q320 + SET_UP + rayon de la bille de palpage (dans le sens inverse du sens de déplacement concerné), le long de l'axe principal et de l'axe auxiliaire. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée. Le sens de palpage est obtenu à partir du numéro du coin. 3 Le palpeur se déplace ensuite jusqu'au point de palpage 2. La CN décale alors le palpeur de la valeur de la distance d'approche Q320 + SET_UP + rayon de la bille de palpage sur l'axe auxiliaire et exécute la deuxième procédure de palpage à cet endroit. 4 La CN positionne le palpeur au point de palpage 3 (même logique de positionnement que pour le 1er point de palpage) et procède au palpage. 5 Le palpeur est ensuite amené au point de palpage 4. La CN décale alors le palpeur de la valeur de la distance d'approche Q320 + SET_UP + rayon de la bille de palpage avant de lancer la quatrième procédure de palpage à cet endroit. 6 Pour terminer, la CN ramène le palpeur à la hauteur de sécurité, traite le point d'origine conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305 (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) et mémorise les coordonnées du coin déterminé aux paramètres Q suivants. 7 Si vous le souhaitez, la commande détermine ensuite également le point d'origine de l'axe de palpage, avec une procédure de palpage distincte. Numéros de paramètres Signification Q151 Valeur effective du coin dans l'axe principal Q152 Valeur effective du coin dans l'axe secondaire HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 473 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE COIN INTERIEUR (cycle 415, DIN/ISO : G415, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. La commande mesure toujours la première droite dans le sens de l'axe auxiliaire du plan d'usinage. 474 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE COIN INTERIEUR (cycle 415, DIN/ISO : G415, option 17) Paramètres du cycle Q263 1er point mesure sur 1er axe? (en absolu) : coordonnée du coin sur l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q264 1er point mesure sur 2ème axe? (en absolu) : coordonnée du coin sur l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q326 Distance 1er axe? (en incrémental) : distance entre le coin et le deuxième point de mesure sur l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q327 Distance 2ème axe? (en incrémental) : distance entre le coin et le quatrième point de mesure sur l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q308 Coin? (1/2/3/4) : numéro du coin/de l'angle auquel la commande doit définir le point d'origine. Plage de programmation : 1 à 4 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q304 Exécuter rotation de base (0/1)? : vous définissez ici si la commande doit compenser le désalignement de la pièce par une rotation de base : 0 : ne pas effectuer de rotation de base 1 : effectuer une rotation de base HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 415 PT REF. EXT. COIN Q263=+37 ;1ER POINT 1ER AXE Q264=+7 ;1ER POINT 2EME AXE Q326=50 ;DISTANCE 1ER AXE Q327=45 ;DISTANCE 2EME AXE Q308=+1 ;COIN Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q304=0 ;ROTATION DE BASE Q305=7 ;NO. DANS TABLEAU Q331=+0 ;POINT DE REFERENCE Q332=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. Q384=+0 ;3.COO.POUR AXE PALP. Q333=+1 ;POINT DE REFERENCE 475 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE COIN INTERIEUR (cycle 415, DIN/ISO : G415, option 17) Q305 Numéro dans tableau? : indiquez le numéro de ligne du tableau de points d'origine/tableau de points zéro sous lequel la commande mémorise les coordonnées. Plage de programmation : 0 à 9999. En fonction de ce que vous avez défini à Q303, la commande procède à l'enregistrement soit dans le tableau de points d'origine soit dans le tableau de points zéro: Si Q303 = 1, la commande utilise le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. Q331 Nouv. pt de réf. axe principal? (en absolu) : coordonnée de l'axe principal à laquelle la commande doit définir le coin déterminé. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q332 Nouv. pt de réf. sur axe auxil.? (en absolu) : coordonnée de l'axe auxiliaire à laquelle la commande doit définir le coin déterminé. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez ici si le point d'origine déterminé doit être sauvegardé dans le tableau de points zéro ou dans le tableau de presets : -1 : ne pas utiliser ! Inscrit par la CN lors de l'importation d'anciens programmes CN(voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 0: Inscrire le point d'origine déterminé dans le tableau de points zéro actifs. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point d'origine déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). Q381 Palpage dans axe palpeur? (0/1) : vous définissez ici si la commande doit également définir le point d'origine sur l'axe de palpage : 0 : ne pas activer le point d'origine dans l'axe de palpage 1 : définir le point d'origine sur l'axe de palpage 476 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE COIN INTERIEUR (cycle 415, DIN/ISO : G415, option 17) Q382 Palp. axe palp.: Coord. 1er axe? (en absolu) : coordonnée du point de palpage dans l'axe principal du plan d'usinage à laquelle le point de référence doit être initialisé dans l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q383 Palp. axe palp.: Coor. 2ème axe? (en absolu) : coordonnée du point de palpage sur l'axe auxiliaire du plan d'usinage dans lequel le point d'origine doit être définir sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q384 Palp. axe palp.: Coor. 3ème axe? (en absolu) : coordonnée du point de palpage sur l'axe de palpage à laquelle le point d'origine doit être défini sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 477 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE DU CERCLE DE TROUS (cycle 416, DIN/ISO: G416, option 17) 16.8 POINT D'ORIGINE CENTRE DU CERCLE DE TROUS (cycle 416, DIN/ISO: G416, option 17) Mode opératoire du cycle Le cycle palpeur 416 calcule le centre d'un cercle de trous en mesurant trois trous et définit ce centre comme point d'origine. La commande peut inscrire le centre, au choix, dans un tableau de points zéro ou dans un tableau de points d'origine. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au centre du premier trou 1, selon la logique de positionnement définie (voir "Exécuter les cycles palpeurs", Page 389). 2 Le palpeur se déplace ensuite à la hauteur de mesure programmée et enregistre le centre du premier trou en palpant quatre fois. 3 Puis, le palpeur retourne à la hauteur de sécurité avant de se positionner au centre programmé du second trou 2. 4 La commande déplace le palpeur à la hauteur de mesure programmée et enregistre le centre du deuxième trou en palpant quatre fois. 5 Puis, le palpeur retourne à la hauteur de sécurité avant de se positionner au centre programmé du troisième trou 3. 6 La commande amène le palpeur à la hauteur de mesure indiquée et enregistre le centre du troisième trou en palpant quatre fois. 7 Pour terminer, la commande retire le palpeur à la hauteur de sécurité, traite le point de référence calculé conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305 (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) et mémorise les valeurs effective aux paramètres Q suivants. 8 Si vous le souhaitez, la commande détermine ensuite également le point d'origine de l'axe de palpage, avec une procédure de palpage distincte. Numéros de paramètres Signification Q151 Valeur effective centre, axe principal Q152 Valeur effective centre, axe secondaire Q153 Valeur effective du diamètre du cercle de trous 478 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE DU CERCLE DE TROUS (cycle 416, DIN/ISO: G416, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 479 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE DU CERCLE DE TROUS (cycle 416, DIN/ISO: G416, option 17) Paramètres du cycle Q273 Centre sur 1er axe (val. nom.)? (en absolu) : centre du cercle de trous (valeur nominale) dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q274 Centre sur 2èmr axe (val. nom.)? (en absolu) : centre du cercle de trous (valeur nominale) dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q262 Diamètre nominal? : entrer le diamètre approximatif du cercle de trous. Plus le diamètre du trou est petit et plus le diamètre nominal à renseigner doit être précis. Plage de programmation : -0 à 99999,9999 Q291 Angle 1er trou? (en absolu) : angle en coordonnées polaires du premier centre de trous dans le plan d'usinage. Plage de programmation : -360,0000 à 360,0000 Q292 Angle 2ème trou? (en absolu) : angle en coordonnées polaires du deuxième centre de trous dans le plan d'usinage. Plage de programmation : -360,0000 à 360,0000 Q293 Angle 3ème trou? (en absolu) : angle en coordonnées polaires du troisième centre de trous dans le plan d'usinage. Plage de programmation : -360,0000 à 360,0000 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q305 Numéro dans tableau? : entrer le numéro de la ligne du tableau de points zéro/tableau de points d’origine sous lequel la commande doit mémoriser les coordonnées du centre. Plage de programmation : 0 à 9999. En fonction de ce que vous avez défini à Q303, la commande procède à l'enregistrement soit dans le tableau de points d'origine soit dans le tableau de points zéro: Si Q303 = 1, la commande utilise le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. 480 Exemple 5 TCH PROBE 416 PT REF CENT. C.TROUS Q273=+50 ;CENTRE 1ER AXE Q274=+50 ;CENTRE 2EME AXE Q262=90 ;DIAMETRE NOMINAL Q291=+34 ;ANGLE 1ER TROU Q292=+70 ;ANGLE 2EME TROU Q293=+210 ;ANGLE 3EME TROU Q261=-5 ;HAUTEUR DE MESURE Q260=+20 ;HAUTEUR DE SECURITE Q305=12 ;NO. DANS TABLEAU Q331=+0 ;POINT DE REFERENCE Q332=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. Q384=+0 ;3.COO.POUR AXE PALP. Q333=+1 ;POINT DE REFERENCE Q320=0 ;DISTANCE D'APPROCHE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE DU CERCLE DE TROUS (cycle 416, DIN/ISO: G416, option 17) Q331 Nouv. pt de réf. axe principal? (en absolu) : coordonnée dans l'axe principal à laquelle la commande définir le centre du cercle de trous déterminé. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q332 Nouv. pt de réf. sur axe auxil.? (en absolu) : coordonnée dans l'axe auxiliaire à laquelle la commande doit définir le centre déterminé pour le cercle de trous. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez ici si le point d'origine déterminé doit être sauvegardé dans le tableau de points zéro ou dans le tableau de presets : -1 : ne pas utiliser ! Inscrit par la CN lors de l'importation d'anciens programmes CN(voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 0: Inscrire le point d'origine déterminé dans le tableau de points zéro actifs. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point d'origine déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). Q381 Palpage dans axe palpeur? (0/1) : vous définissez ici si la commande doit également définir le point d'origine sur l'axe de palpage : 0 : ne pas activer le point d'origine dans l'axe de palpage 1 : définir le point d'origine sur l'axe de palpage Q382 Palp. axe palp.: Coord. 1er axe? (en absolu) : coordonnée du point de palpage dans l'axe principal du plan d'usinage à laquelle le point de référence doit être initialisé dans l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q383 Palp. axe palp.: Coor. 2ème axe? (en absolu) : coordonnée du point de palpage sur l'axe auxiliaire du plan d'usinage dans lequel le point d'origine doit être définir sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 481 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE DU CERCLE DE TROUS (cycle 416, DIN/ISO: G416, option 17) Q384 Palp. axe palp.: Coor. 3ème axe? (en absolu) : coordonnée du point de palpage sur l'axe de palpage à laquelle le point d'origine doit être défini sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs) et uniquement lorsque le point d'origine est palpé dans l'axe de palpage. Plage de programmation : 0 à 99999,9999 482 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE AXE DE PALPAGE (cycle 417, DIN/ISO : G417, option 17) 16.9 POINT D'ORIGINE AXE DE PALPAGE (cycle 417, DIN/ISO : G417, option 17) Mode opératoire du cycle Le cycle palpeur 417 mesure une coordonnée au choix dans l'axe de palpage et la définit comme point d'origine. La commande peut également inscrire la coordonnée mesurée dans un tableau de points zéro ou un tableau de points d'origine. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au point de palpage programmé 1, selon la logique de positionnement définie (voir "Exécuter les cycles palpeurs", Page 389). La CN décale alors le palpeur de la valeur de la distance d'approche, dans le sens positif de l'axe de palpage. 2 Puis, le palpeur est amené jusqu'à la coordonnée programmée pour le point de palpage 1, sur l'axe du palpeur, et enregistre la position effective par un simple palpage. 3 Pour terminer, la CN retire le palpeur à la hauteur de sécurité, traite le point d'origine conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305 (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448), et mémorise la valeur effective au paramètre Q suivant. Numéros de paramètres Signification Q160 Valeur effective du point mesuré Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. La commande définit alors le point d'origine dans cet axe. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 483 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE AXE DE PALPAGE (cycle 417, DIN/ISO : G417, option 17) Paramètres du cycle Q263 1er point mesure sur 1er axe? (en absolu) : coordonnée du premier point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q264 1er point mesure sur 2ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q294 1er point mesure sur 3ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe de palpage. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q305 Numéro dans tableau? : entrer le numéro de la ligne du tableau de points zéro/tableau de points d’origine sous lequel la commande doit mémoriser les coordonnées. Plage de programmation : 0 à 9999. Si Q303 = 1, la commande renseigne le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 484 Exemple 5 TCH PROBE 417 PT REF DANS AXE TS Q263=+25 ;1ER POINT 1ER AXE Q264=+25 ;1ER POINT 2EME AXE Q294=+25 ;1ER POINT 3EME AXE Q320=0 ;DISTANCE D'APPROCHE Q260=+50 ;HAUTEUR DE SECURITE Q305=0 ;NO. DANS TABLEAU Q333=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE AXE DE PALPAGE (cycle 417, DIN/ISO : G417, option 17) Q303 Transfert val. mesure (0,1)? : vous définissez ici si le point d'origine déterminé doit être sauvegardé dans le tableau de points zéro ou dans le tableau de presets : -1 : ne pas utiliser ! Inscrit par la CN lors de l'importation d'anciens programmes CN(voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 0: Inscrire le point d'origine déterminé dans le tableau de points zéro actifs. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point d'origine déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 485 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE 4 TROUS (cycle 418, DIN/ISO : G418, option 17) 16.10 POINT D'ORIGINE CENTRE 4 TROUS (cycle 418, DIN/ISO : G418, option 17) Mode opératoire du cycle Le cycle palpeur 148 calcule le point d'intersection des droites qui font la liaison entre les centres des trous et le définit comme point d'origine. La commande peut également inscrire le point d'intersection, au choix, dans le tableau de points zéro ou dans le tableau de points d'origine. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au centre du premier trou 1, selon la logique de positionnement définie (voir "Exécuter les cycles palpeurs", Page 389). 2 Le palpeur se déplace ensuite à la hauteur de mesure programmée et enregistre le centre du premier trou en palpant quatre fois. 3 Puis, le palpeur retourne à la hauteur de sécurité avant de se positionner au centre programmé du second trou 2. 4 La commande déplace le palpeur à la hauteur de mesure programmée et enregistre le centre du deuxième trou en palpant quatre fois. 5 La commande répète la procédure pour les trous 3 et 4. 6 Pour terminer, la commande retire le palpeur à la hauteur de sécurité et traite le point de référence calculé conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305. (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448). La commande détermine comme point d'origine le point d'intersection des deux droites reliant les centres des trous 1/3 et 2/4. Les valeurs effectives sont mémorisées dans les paramètres Q énumérés ci-après. 7 Si vous le souhaitez, la commande détermine ensuite également le point d'origine de l'axe de palpage, avec une procédure de palpage distincte. Numéros de paramètres Signification Q151 Valeur effective du point d'intersection, axe principal Q152 Valeur effective du point d'intersection, axe secondaire 486 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE 4 TROUS (cycle 418, DIN/ISO : G418, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 487 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE 4 TROUS (cycle 418, DIN/ISO : G418, option 17) Paramètres du cycle Q268 1er trou: centre sur 1er axe? (en absolu) : centre du premier trou dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q269 1er trou: centre sur 2ème axe? (en absolu) : centre du premier trou dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q270 2ème trou: centre sur 1er axe? (en absolu) : centre des deux trous dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q271 2ème trou: centre sur 2ème axe? (en absolu) : centre du deuxième trou dans l'axe auxiliaire du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q270 3ème trou: centre 1er axe? (en absolu) : centre du 3ème trou dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q271 3ème trou: centre 2ème axe? (en absolu) : centre du 3ème trou sur l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q318 4ème trou: centre 1er axe? (en absolu) : centre du 4ème trou dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q319 4ème trou: centre 2ème axe? (en absolu) : centre du 4ème trou dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Exemple 5 TCH PROBE 418 PT REF AVEC 4 TROUS Q268=+20 ;1ER CENTRE 1ER AXE Q269=+25 ;1ER CENTRE 2EME AXE Q270=+150 ;2EME CENTRE 1ER AXE Q271=+25 ;2EME CENTRE 2EME AXE Q316=+150 ;3EME CENTRE 1ER AXE Q317=+85 ;3EME CENTRE 2EME AXE Q318=+22 ;4EME CENTRE 1ER AXE Q319=+80 ;4EME CENTRE 2EME AXE Q261=-5 ;HAUTEUR DE MESURE Q260=+10 ;HAUTEUR DE SECURITE Q305=12 ;NO. DANS TABLEAU Q331=+0 ;POINT DE REFERENCE Q332=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. 488 Q384=+0 ;3.COO.POUR AXE PALP. Q333=+0 ;POINT DE REFERENCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE 4 TROUS (cycle 418, DIN/ISO : G418, option 17) Q305 Numéro dans tableau? : vous indiquez ici le numéro de la ligne du tableau de points d'origine/ points zéro à laquelle la commande mémorise les coordonnées du point d'intersection des lignes de liaison. Plage de programmation : 0 à 9999. Si Q303 = 1, la commande renseigne le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. Q331 Nouv. pt de réf. axe principal? (en absolu) : coordonnée dans l'axe principal à laquelle la commande doit définir le point d'intersection des lignes de liaison déterminé. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q332 Nouv. pt de réf. sur axe auxil.? (en absolu) : coordonnée de l'axe auxiliaire à laquelle la commande doit définir le point d'intersection des lignes de liaison déterminé. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez ici si le point d'origine déterminé doit être sauvegardé dans le tableau de points zéro ou dans le tableau de presets : -1 : ne pas utiliser ! Inscrit par la CN lors de l'importation d'anciens programmes CN(voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 0: Inscrire le point d'origine déterminé dans le tableau de points zéro actifs. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point d'origine déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). Q381 Palpage dans axe palpeur? (0/1) : vous définissez ici si la commande doit également définir le point d'origine sur l'axe de palpage : 0 : ne pas activer le point d'origine dans l'axe de palpage 1 : définir le point d'origine sur l'axe de palpage HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 489 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE 4 TROUS (cycle 418, DIN/ISO : G418, option 17) Q382 Palp. axe palp.: Coord. 1er axe? (en absolu) : coordonnée du point de palpage dans l'axe principal du plan d'usinage à laquelle le point de référence doit être initialisé dans l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q383 Palp. axe palp.: Coor. 2ème axe? (en absolu) : coordonnée du point de palpage sur l'axe auxiliaire du plan d'usinage dans lequel le point d'origine doit être définir sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q384 Palp. axe palp.: Coor. 3ème axe? (en absolu) : coordonnée du point de palpage sur l'axe de palpage à laquelle le point d'origine doit être défini sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 490 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE AXE INDIVIDUEL (cycle 419, DIN/ISO : G419, option 17) 16.11 POINT D'ORIGINE AXE INDIVIDUEL (cycle 419, DIN/ISO : G419, option 17) Mode opératoire du cycle Le cycle palpeur 419 mesure une coordonnée sur un axe au choix et la définit comme point d'origine. La commande peut également inscrire la coordonnée mesurée dans un tableau de points zéro ou un tableau de points d'origine. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au point de palpage programmé 1, selon la logique de positionnement définie (voir "Exécuter les cycles palpeurs", Page 389). La commande décale alors le palpeur de la valeur de distance d'approche dans le sens opposé au sens de palpage programmé. 2 Puis, le palpeur se déplace à la hauteur de mesure programmée et enregistre la position effective par simple palpage 3 Pour terminer, la commande retire le palpeur à la hauteur de sécurité et traite le point de référence calculé conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305. (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Si vous souhaitez mémoriser le même point d'origine pour plusieurs axes dans le tableau de points d'origine, vous pouvez utiliser le cycle 419 plusieurs fois de suite. Pour cela, il vous faudra toutefois réactiver le numéro du point d'origine à chaque nouvelle exécution du cycle 419. Si vous travaillez avec le point d'origine 0 comme point d'origine actif, il n'est pas utile d'en passer par cette procédure. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 491 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE AXE INDIVIDUEL (cycle 419, DIN/ISO : G419, option 17) Paramètres du cycle Q263 1er point mesure sur 1er axe? (en absolu) : coordonnée du premier point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q264 1er point mesure sur 2ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q272 Axe mes. (1...3, 1=axe princ.)? : axe sur lequel la mesure doit être effectuée : 1 : axe principal = axe de mesure 2 : axe auxiliaire = axe de mesure 3 : axe du palpeur = axe de mesure 5 TCH PROBE 419 PT DE REF SUR UN AXE Q263=+25 ;1ER POINT 1ER AXE Q264=+25 ;1ER POINT 2EME AXE Q261=+25 ;HAUTEUR DE MESURE Affectation des axes Q320=0 Axe de palpage actif : Q272 = 3 Axe principal associé : Q272= 1 Axe auxiliaire associé : Q272= 2 Z X Y Y Z X X Y Z Q267 Sens déplacement 1 (+1=+/-1=-)? : sens dans lequel le palpeur doit s’approcher de la pièce : -1 : sens de déplacement négatif +1 : sens de déplacement positif 492 Exemple ;DISTANCE D'APPROCHE Q260=+50 ;HAUTEUR DE SECURITE Q272=+1 ;AXE DE MESURE Q267=+1 ;SENS DEPLACEMENT Q305=0 ;NO. DANS TABLEAU Q333=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE AXE INDIVIDUEL (cycle 419, DIN/ISO : G419, option 17) Q305 Numéro dans tableau? : entrer le numéro de la ligne du tableau de points zéro/tableau de points d’origine sous lequel la commande doit mémoriser les coordonnées. Plage de programmation : 0 à 9999. Si Q303 = 1, la commande renseigne le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. Q333 Nouveau point de référence? (en absolu) : coordonnée à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez ici si le point d'origine déterminé doit être sauvegardé dans le tableau de points zéro ou dans le tableau de presets : -1 : ne pas utiliser ! Inscrit par la CN lors de l'importation d'anciens programmes CN(voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) 0: Inscrire le point d'origine déterminé dans le tableau de points zéro actifs. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point d'origine déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 493 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE RAINURE (cycle 408, DIN/ISO : G408, option 17) 16.12 POINT D'ORIGINE CENTRE RAINURE (cycle 408, DIN/ISO : G408, option 17) Mode opératoire du cycle Le cycle palpeur 408 détermine le centre d'une rainure et l'initialise comme point d'origine. La commande peut inscrire le centre, au choix, dans un tableau de points zéro ou dans un tableau de points d'origine. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389) définie. La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée 3 Puis, le palpeur se déplace soit paraxialement à la hauteur de mesure, soit linéairement à la hauteur de sécurité, jusqu'au point de palpage suivant 2 où il exécute la deuxième opération de palpage. 4 Pour terminer, la commande retire le palpeur à la hauteur de sécurité, traite le point de référence calculé conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305 (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) et mémorise les valeurs effective aux paramètres Q suivants. 5 Si vous le souhaitez, la commande détermine ensuite également le point d'origine de l'axe de palpage, avec une procédure de palpage distincte. Numéros de paramètres Signification Q166 Valeur effective de la largeur de rainure mesurée Q157 Valeur effective de l'axe central 494 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE RAINURE (cycle 408, DIN/ISO : G408, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées REMARQUE Attention, risque de collision ! Pour éviter toute collision entre le palpeur et la pièce, programmez la largeur de la rainure de manière à ce qu'elle soit plutôt plus petite. Si la largeur de la rainure et la distance d'approche ne permettent pas d'effectuer un prépositionnement à proximité des points de palpage, la commande procède toujours au palpage en partant du centre de la rainure. Dans ce cas, le palpeur ne se déplace pas à la hauteur de sécurité entre les deux points de mesure. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 495 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE RAINURE (cycle 408, DIN/ISO : G408, option 17) Paramètres du cycle Q321 Centre 1er axe? (en absolu) : centre de la rainure dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q322 Centre 2ème axe? (en absolu) : centre de la rainure dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q311 Largeur de la rainure? (en incrémental) : largeur de la rainure indépendamment de la position dans le plan d’usinage. Plage de programmation : 0 à 99999,9999 Q272 Axe de mesure (1=1er / 2=2ème)? : axe du plan d'usinage sur lequel la mesure doit avoir lieu : 1 : axe principal = axe de mesure 2 : axe auxiliaire = axe de mesure Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Exemple 5 TCH PROBE 408 PTREF CENTRE RAINURE Q321=+50 ;CENTRE 1ER AXE Q322=+50 ;CENTRE 2EME AXE Q311=25 ;LARGEUR RAINURE Q272=1 ;AXE DE MESURE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q305=10 ;NO. DANS TABLEAU Q405=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. 496 Q384=+0 ;3.COO.POUR AXE PALP. Q333=+1 ;POINT DE REFERENCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE RAINURE (cycle 408, DIN/ISO : G408, option 17) Q305 Numéro dans tableau? : entrer le numéro de la ligne du tableau de points zéro/tableau de points d’origine sous lequel la commande doit mémoriser les coordonnées du centre. Plage de programmation : 0 à 9999. En fonction de ce que vous avez défini à Q303, la commande procède à l'enregistrement soit dans le tableau de points d'origine soit dans le tableau de points zéro: Si Q303 = 1, la commande utilise le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. Q405 Nouveau point de référence? (en absolu) : coordonnée de l'axe de mesure à laquelle la commande doit définir le centre de la rainure. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez si le point d'origine déterminé doit être, ou non, mémorisé dans le tableau de points zéro ou dans le tableau de points d'origine : 0 : inscrire le point d'origine comme décalage de point zéro dans le tableau de points zéro. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point de référence déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). Q381 Palpage dans axe palpeur? (0/1) : vous définissez ici si la commande doit également définir le point d'origine sur l'axe de palpage : 0 : ne pas activer le point d'origine dans l'axe de palpage 1 : définir le point d'origine sur l'axe de palpage Q382 Palp. axe palp.: Coord. 1er axe? (en absolu) : coordonnée du point de palpage dans l'axe principal du plan d'usinage à laquelle le point de référence doit être initialisé dans l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 497 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE RAINURE (cycle 408, DIN/ISO : G408, option 17) Q383 Palp. axe palp.: Coor. 2ème axe? (en absolu) : coordonnée du point de palpage sur l'axe auxiliaire du plan d'usinage dans lequel le point d'origine doit être définir sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q384 Palp. axe palp.: Coor. 3ème axe? (en absolu) : coordonnée du point de palpage sur l'axe de palpage à laquelle le point d'origine doit être défini sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 498 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE ILOT (cycle 409, 'DIN/ISO : G409, option 17) 16.13 POINT D'ORIGINE CENTRE ILOT (cycle 409, 'DIN/ISO : G409, option 17) Mode opératoire du cycle Le cycle palpeur 409 détermine le centre d'un îlot et le définit comme point d'origine. La commande peut inscrire le centre, au choix, dans un tableau de points zéro ou dans un tableau de points d'origine. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389) définie. La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée 3 La commande amène ensuite le palpeur à la hauteur de sécurité, au point de palpage 2 et exécuter la deuxième procédure de palpage. 4 Pour terminer, la commande retire le palpeur à la hauteur de sécurité, traite le point de référence calculé conformément à ce qui a été défini aux paramètres de cycle Q303 et Q305 (voir "Caractéristiques communes à tous les cycles palpeurs pour la définition du point d'origine", Page 448) et mémorise les valeurs effective aux paramètres Q suivants. 5 Si vous le souhaitez, la commande détermine ensuite également le point d'origine de l'axe de palpage, avec une procédure de palpage distincte. Numéros de paramètres Signification Q166 Valeur effective largeur l'oblong Q157 Valeur effective de la position milieu HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 499 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE ILOT (cycle 409, 'DIN/ISO : G409, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées REMARQUE Attention, risque de collision ! Pour éviter toute collision entre le palpeur et la pièce, programmez pour la largeur de l'ilot oblong une valeur plutôt plus grande. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. 500 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE ILOT (cycle 409, 'DIN/ISO : G409, option 17) Paramètres du cycle Q321 Centre 1er axe? (en absolu) : centre de l’îlot dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q322 Centre 2ème axe? (en absolu) : centre de la traverse sur l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q311 Largeur oblong? (en incrémental) : largeur de la traverse indépendamment de la position dans le plan d’usinage. Plage de programmation : 0 à 99999,9999 Q272 Axe de mesure (1=1er / 2=2ème)? : axe du plan d'usinage sur lequel la mesure doit avoir lieu : 1 : axe principal = axe de mesure 2 : axe auxiliaire = axe de mesure Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q305 Numéro dans tableau? : entrer le numéro de la ligne du tableau de points zéro/tableau de points d’origine sous lequel la commande doit mémoriser les coordonnées du centre. Plage de programmation : 0 à 9999. En fonction de ce que vous avez défini à Q303, la commande procède à l'enregistrement soit dans le tableau de points d'origine soit dans le tableau de points zéro: Si Q303 = 1, la commande utilise le tableau de points d'origine. Si une modification est apportée au point d’origine actif, elle agit immédiatement. Sinon, elle procède à l'enregistrement à la ligne concernée du tableau de points d'origine, sans activation automatique Si Q303 = 0, alors la commande utilise le tableau de points zéro. Le point zéro n'est pas activé automatiquement. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 409 PTREF CENT. OBLONG Q321=+50 ;CENTRE 1ER AXE Q322=+50 ;CENTRE 2EME AXE Q311=25 ;LARGEUR OBLONG Q272=1 ;AXE DE MESURE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q305=10 ;NO. DANS TABLEAU Q405=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE Q381=1 ;PALP. DS AXE PALPEUR Q382=+85 ;1.COO.POUR AXE PALP. Q383=+50 ;2.COO.POUR AXE PALP. Q384=+0 ;3.COO.POUR AXE PALP. Q333=+1 ;POINT DE REFERENCE 501 16 16 Cycles palpeurs : initialisation automatique des points d'origine | POINT D'ORIGINE CENTRE ILOT (cycle 409, 'DIN/ISO : G409, option 17) Q405 Nouveau point de référence? (en absolu) : coordonnée de l'axe de mesure à laquelle la commande doit définir le centre de la traverse déterminé. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 Q303 Transfert val. mesure (0,1)? : vous définissez si le point d'origine déterminé doit être, ou non, mémorisé dans le tableau de points zéro ou dans le tableau de points d'origine : 0 : inscrire le point d'origine comme décalage de point zéro dans le tableau de points zéro. Le système de référence correspond au système de coordonnées de la pièce 1 : inscrire le point de référence déterminé dans le tableau de points d'origine. Le système de référence est le système de coordonnées machine (système REF). Q381 Palpage dans axe palpeur? (0/1) : vous définissez ici si la commande doit également définir le point d'origine sur l'axe de palpage : 0 : ne pas activer le point d'origine dans l'axe de palpage 1 : définir le point d'origine sur l'axe de palpage Q382 Palp. axe palp.: Coord. 1er axe? (en absolu) : coordonnée du point de palpage dans l'axe principal du plan d'usinage à laquelle le point de référence doit être initialisé dans l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q383 Palp. axe palp.: Coor. 2ème axe? (en absolu) : coordonnée du point de palpage sur l'axe auxiliaire du plan d'usinage dans lequel le point d'origine doit être définir sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q384 Palp. axe palp.: Coor. 3ème axe? (en absolu) : coordonnée du point de palpage sur l'axe de palpage à laquelle le point d'origine doit être défini sur l'axe de palpage. N'agit que si Q381 = 1. Plage de programmation : -99999,9999 à 99999,9999 Q333 Nouv. pt de réf. sur axe TS? (en absolu) : coordonnée de l'axe de palpage à laquelle la commande doit définir le point d'origine. Valeur par défaut = 0 Plage de programmation : -99999,9999 à 99999,9999 502 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | Exemple : Définition d'un point d'origine au centre d'un segment circulaire et arête supérieure de la pièce 16.14 Exemple : Définition d'un point d'origine au centre d'un segment circulaire et arête supérieure de la pièce 0 BEGIN PGM CYC413 MM 1 TOOL CALL 69 Z 2 TCH PROBE 413 PT REF. EXT. CERCLE Q321=+25 ;CENTRE 1ER AXE Centre du cercle : coordonnée X Q322=+25 ;CENTRE 2EME AXE Centre du cercle : coordonnée Y Q262=30 ;DIAMETRE NOMINAL Diamètre du cercle Q325=+90 ;ANGLE INITIAL Angle en coordonnées polaires pour 1er point de palpage Q247=+45 ;INCREMENT ANGULAIRE Incrément angulaire pour calculer les points de palpage 2 à 4 Q261=-5 ;HAUTEUR DE MESURE Coordonnée à laquelle est effectuée la mesure, sur l'axe de palpage Q320=2 ;DISTANCE D'APPROCHE Distance d'approche supplémentaire à la colonne SET_UP Q260=+10 ;HAUTEUR DE SECURITE Hauteur à laquelle l'axe de palpage peut se déplacer sans risque de collision Q301=0 ;DEPLAC. HAUT. SECU. Entre les points de mesure, ne pas aller à hauteur de sécurité Q305=0 ;NO. DANS TABLEAU Initialiser l'affichage Q331=+0 ;POINT DE REFERENCE Initialiser l'affichage X à 0 Q332=+10 ;POINT DE REFERENCE Initialiser l'affichage Y à 0 Q303=+0 ;TRANSF. VAL. MESURE Sans fonction car l'affichage doit être initialisé Q381=1 ;PALP. DS AXE PALPEUR Initialiser également le point d'origine dans l'axe du palpeur Q382=+25 ;1.COO.POUR AXE PALP. Point de palpage coordonnée X Q383=+25 ;2.COO.POUR AXE PALP. Point de palpage coordonnée Y Q384=+25 ;3.COO.POUR AXE PALP. Point de palpage coordonnée Z Q333=+0 ;POINT DE REFERENCE Initialiser l'affichage Z à 0 Q423=4 ;NOMBRE DE PALPAGES Mesurer un cercle avec 4 palpages Q365=0 ;TYPE DEPLACEMENT Trajectoire circulaire entre les points de mesure 3 CALL PGM 35K47 Appeler le programme d'usinage 4 END PGM CYC413 MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 503 16 16 Cycles palpeurs : initialisation automatique des points d'origine | Exemple : Définition du point d'origine de l'arête supérieure de la pièce et centre du cercle de trous 16.15 Exemple : Définition du point d'origine de l'arête supérieure de la pièce et centre du cercle de trous Le centre du cercle de trous mesuré doit être mémorisé dans un tableau de points d'origine en vue d'une utilisation ultérieure. 0 BEGIN PGM CYC416 MM 1 TOOL CALL 69 Z 2 TCH POBE 417 PT REF DANS AXE TS Définition du cycle de définition d'un point d'origine sur l'axe de palpage Q263=+7,5 ;1ER POINT 1ER AXE Point de palpage : coordonnée X Q264=+7,5 ;1ER POINT 2EME AXE Point de palpage : coordonnée Y Q294=+25 ;1ER POINT 3EME AXE Point de palpage : coordonnée Z Q320=0 ;DISTANCE D'APPROCHE Distance d'approche supplémentaire à la colonne SET_UP Q260=+50 ;HAUTEUR DE SECURITE Hauteur à laquelle l'axe de palpage peut se déplacer sans risque de collision Q305=1 ;NO. DANS TABLEAU Mémoriser la coordonnée Z sur la ligne 1 Q333=+0 ;POINT DE REFERENCE Initialiser l'axe palpeur à 0 Q303=+1 ;TRANSF. VAL. MESURE Enregistrement du point d'origine calculé par rapport au système de coordonnées fixe de la machine (système REF) dans le tableau de points d'origine PRESET.PR 3 TCH PROBE 416 PT REF CENT. C.TROUS Q273=+35 ;CENTRE 1ER AXE Centre du cercle de trous : coordonnée X Q274=+35 ;CENTRE 2EME AXE Centre du cercle de trous : coordonnée Y Q262=50 ;DIAMETRE NOMINAL Diamètre du cercle de trous Q291=+90 ;ANGLE 1ER TROU Angle en coordonnées polaires pour le 1er centre de trou 1 Q292=+180 ;ANGLE 2EME TROU Angle en coordonnées polaires pour le 2ème centre de trou 2 Q293=+270 ;ANGLE 3EME TROU Angle en coordonnées polaires pour le 3ème centre de trou 3 Q261=+15 ;HAUTEUR DE MESURE Coordonnée à laquelle est effectuée la mesure, sur l'axe de palpage Q260=+10 ;HAUTEUR DE SECURITE Hauteur à laquelle l'axe de palpage peut se déplacer sans risque de collision Q305=1 ;NO. DANS TABLEAU Inscription du centre du cercle de trous (X et Y) à la ligne 1 504 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : initialisation automatique des points d'origine | Exemple : Définition du point d'origine de l'arête supérieure de la pièce et centre du cercle de trous Q331=+0 ;POINT DE REFERENCE Q332=+0 ;POINT DE REFERENCE Q303=+1 ;TRANSF. VAL. MESURE Enregistrement du point d'origine calculé par rapport au système de coordonnées fixe de la machine (système REF) dans le tableau de points d'origine PRESET.PR Q381=0 ;PALP. DS AXE PALPEUR Ne pas initialiser de point d'origine dans l'axe du palpeur Q382=+0 ;1.COO.POUR AXE PALP. Sans fonction Q383=+0 ;2.COO.POUR AXE PALP. Sans fonction Q384=+0 ;3.COO.POUR AXE PALP. Sans fonction Q333=+0 ;POINT DE REFERENCE Sans fonction Q320=0 ;DISTANCE D'APPROCHE. Distance d'approche supplémentaire à la colonne SET_UP 4 CYCL DEF 247 INIT. PT DE REF. Q339=1 Activation du nouveau point d'origine avec le cycle 247 ;NUMERO POINT DE REF. 6 CALL PGM 35KLZ Appeler le programme d'usinage 7 END PGM CYC416 MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 505 16 17 Cycles palpeurs : contrôle automatique des pièces 17 Cycles palpeurs : contrôle automatique des pièces | Principes de base 17.1 Principes de base Résumé REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées La CN doit avoir été préparée par le constructeur de la machine pour l'utilisation du palpeur 3D. HEIDENHAIN ne garantit le fonctionnement correct des cycles de palpage qu'avec les palpeurs HEIDENHAIN. La commande propose douze cycles pour mesurer automatiquement des pièces : Softkey 508 Cycle Page 0 PLAN DE REFERENCE Mesure de coordonnée dans un axe au choix 514 1 PLAN DE REF POLAIRE Mesure d'un point, sens de palpage avec angle 515 420 MESURE ANGLE Mesure d'un angle dans le plan d'usinage 517 421 MESURE TROU Mesure de la position et du diamètre d'un trou 520 422 MESURE EXT. CERCLE Mesure de la position et du diamètre d'un tenon circulaire 525 423 MESURE INT. RECTANG. Mesure de la position, de la longueur et de la largeur d'une poche rectangulaire 530 424 MESURE EXT. RECTANG. Mesure de la longueur et de la largeur d'un tenon rectangulaire 534 425 MESURE INT. RAINURE (2ème barre de softkeys) Mesure de la largeur intérieure d'une rainure 537 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | Principes de base Softkey Cycle Page 426 MESURE EXT. ILOT OBLONG (2ème barre de softkeys) Mesure d'un ilot oblong à l'extérieur 540 427 MESURE COORDONNEE (2ème barre de softkeys) Mesure d'une coordonnée quelconque dans un axe au choix 543 430 MESURE CERCLE TROUS (2ème niveau de softkeys) Mesure de la position et du diamètre d'un cercle de trous 546 431 MESURE PLAN (2ème barre de softkeys) Mesure de l'angle des axes A et B d'un plan 549 Enregistrer les résultats des mesures Pour tous les cycles qui permettent de mesurer automatiquement des pièces (à l'exception des cycles 0 et 1), il est possible de demander à la commande de générer un procès-verbal de mesure. Dans le cycle de palpage utilisé, vous pouvez définir si la commande doit enregistrer le procès-verbal de mesure dans un fichier restituer à l'écran le procès-verbal de mesure et interrompre le déroulement du programme ne pas générer de procès-verbal de mesure Pour la cas où vous souhaiteriez sauvegarder le procès-verbal de mesure dans un fichier, la commande enregistre par défaut les données sous forme de fichier ASCII. La commande choisit alors comme emplacement le répertoire qui contient aussi le programme CN associé. Utilisez le logiciel de transfert de données TNCremo de HEIDENHAIN pour transmettre le procès-verbal de mesure via l'interface de données. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 509 17 Cycles palpeurs : contrôle automatique des pièces | Principes de base Exemple : fichier procès-verbal pour cycle palpeur 421 : Procès-verbal mesure cycle 421 Mesure trou Date: 30-06-2005 Heure : 06:55:04 Programme de mesure : TNC:\GEH35712\CHECK1.H Valeurs nominales : Centre axe principal : Centre axe auxiliaire : Diamètre : 50.0000 65.0000 12.0000 Valeurs limites prédéfinies : Cote max. centre axe principal : Cote min. centre axe principal : Cote max. centre axe auxiliaire : 50.1000 49.9000 65.1000 Cote min. centre axe auxiliaire : Cote max. du trou : Cote min. du trou : 64.9000 12.0450 12.0000 Valeurs effectives : Centre axe principal : Centre axe auxiliaire : Diamètre : 50.0810 64.9530 12.0259 Ecarts : Centre axe principal : Centre axe auxiliaire : Diamètre : 0.0810 -0.0470 0.0259 Autres résultats de mesure : Hauteur de mesure : -5.0000 Fin procès-verbal de mesure 510 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | Principes de base Résultats de la mesure dans les paramètres Q La commande mémorise les résultats de mesure du cycle de palpage concerné aux paramètres Q qui ont un effet global, Q150 à Q160. Les écarts par rapport à la valeur nominale sont mémorisés dans les paramètres Q161 à Q166. Tenez compte du tableau des paramètres de résultat associé à chaque définition de cycle. Lors de la Définition du cycle, la commande affiche les paramètres de résultat également dans l'écran d'aide du cycle concerné (voir image à droite). Le paramètre de résultat en surbrillance correspond au paramètre de définition concerné. Etat de la mesure Dans certains cycles, vous pouvez interroger l'état de la mesure avec les paramètres Q à effet global, Q180 à Q182. Etat de la mesure Valeur de paramètre Valeurs de mesure dans la tolérance Q180 = 1 Reprise d'usinage nécessaire Q181 = 1 Rebut Q182 = 1 La commande active les marqueurs de reprise d'usinage ou de rebut dès que l'une des valeurs de mesure se trouve en dehors de la tolérance. Pour déterminer le résultat de la mesure hors tolérance, consultez également le procès-verbal de mesure ou vérifiez les résultats de la mesure concernés (Q150 à Q160) par rapport à leurs valeurs limites. Avec le cycle 427, la commande considère par défaut que vous mesurez une cote externe (tenon). En choisissant la cote max. et la cote min. en relation avec le sens du palpage, vous pouvez toutefois configurer correctement l'état de la mesure. La CN active alors également les marqueurs d'état même si vous n'avez programmé ni valeurs de tolérance ni cotes maximales/minimales. Surveillance de la tolérance Dans la plupart des cycles de contrôle de la pièce, vous pouvez faire en sorte que la commande contrôle les tolérances. Il vous faut pour cela définir les valeurs limites requises lors de la définition du cycle. Si vous ne voulez pas que les tolérances soient contrôlées, entrez la valeur 0 à ce paramètre (= valeur prédéfinie). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 511 17 Cycles palpeurs : contrôle automatique des pièces | Principes de base Surveillance de l'outil Dans certains cycles de contrôle de la pièce, vous pouvez faire en sorte que la commande surveille l'outil. La commande vérifie alors si : le rayon d'outil doit être corrigé en raison des écarts par rapport à la valeur nominale (valeurs à Q16x) les écarts par rapport à la valeur nominale (valeurs à Q16x) sont supérieurs à la tolérance de rupture de l'outil Corriger l'outil Cette fonction n'est possible qu'aux conditions suivantes : si le tableau d'outils est actif si vous activez le contrôle d'outil dans le cycle : renseigner une valeur différente de 0 ou un nom d'outil à Q330. Le nom de l'outil s'insère par softkey. La CN n'affiche plus le guillemet à droite. Si vous procédez à plusieurs mesures de correction, la commande ajoutera chaque fois l'écart mesuré à la valeur qui est déjà mémorisée dans le tableau d'outils. Outil de fraisage : Si le paramètre Q330 renvoie à un outil de fraisage, les valeurs correspondantes seront corrigées comme suit : la commande corrigera systématiquement le rayon d'outil figurant dans la colonne DR du tableau d'outils, même si l'écart mesuré se trouve dans la limite de la tolérance prédéfinie. Pour savoir si vous devez faire une reprise d'usinage, consultez le paramètre Q181 dans votre programme CN (Q181=1: réusinage). Si vous souhaitez corriger automatiquement un outil indexé avec un nom d'outil, procédez à une programmation comme suit : QS0 = "NOM D'OUTIL" FN18: SYSREAD Q0 = ID990 NR10 IDX0; le numéro du paramètre QS est indiqué sous IDX. Q0= Q0 +0.2 ; ajouter l'index du numéro d'outil de base Dans le cycle : Q330 = Q0 ; utiliser le numéro d'outil avec l'index 512 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | Principes de base Contrôle des bris d'outils Cette fonction n'est possible qu'aux conditions suivantes : Si le tableau d'outils est actif Si vous activez la surveillance de l'outil dans le cycle (Q330 différent de 0) Si vous avez paramétré une tolérance de rupture RBREAK supérieure à 0 pour le numéro d'outil indiqué Informations complémentaires : manuel utilisateur Configuration, test et exécution de programmes CN La commande émet un message d'erreur et arrêt l'exécution du programme si l'écart mesuré est supérieur à la tolérance de rupture de l'outil. Elle verrouille simultanément l'outil dans le tableau d'outils (colonne TL = L). Système de référence pour les résultats de la mesure La commande émet tous les résultats de mesure dans les paramètres de résultats et dans le fichier de procès-verbal du système de coordonnées (qui peut-être décalé et/ou tournée/ incliné). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 513 17 Cycles palpeurs : contrôle automatique des pièces | PLAN DE REFERENCE (cycle 0, DIN/ISO : G55, option 17) 17.2 PLAN DE REFERENCE (cycle 0, DIN/ISO : G55, option 17) Mode opératoire du cycle 1 Le palpeur approche la pré-position 1 définie dans le cycle en avance rapide (valeur de la colonne FMAX), en décrivant un mouvement en 3D. 2 Le palpeur procède ensuite à l'opération de palpage en tenant compte de l'avance de palpage (colonne F). Le sens de palpage est à définir dans le cycle. 3 Une fois que la commande a acquis la position, le palpeur revient au point de départ de la procédure de palpage et mémorise la coordonnées mesurée dans un paramètre Q. Par ailleurs, la commande mémorise aux paramètres Q115 à Q119 les coordonnées de la position à laquelle se trouve le palpeur au signal de commutation. Pour les valeurs de ces paramètres, la commande ne tient compte ni de la longueur, ni du rayon de la tige de palpage. Attention lors de la programmation! REMARQUE Attention, risque de collision ! La commande amène le palpeur à la pré-position programmée dans le cycle selon un mouvement tridimensionnel, en avance rapide. Selon la position à laquelle se trouve l'outil avant le déplacement, il existe un risque de collision ! Prépositionner de manière à éviter toute collision lors de l'abordage de la préposition programmée Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Paramètres du cycle No. paramètre pour résultat? : indiquer le numéro du paramètre Q auquel la valeur de la coordonnée doit être affectée. Plage de programmation : 0 à 1999 Axe palpage / sens palpage? : entrer l'axe de palpage à l'aide de la touche de sélection d’axe ou du clavier ASCII et préciser le signe du sens de palpage. Valider avec la touche ENT. Plage de programmation de tous les axes CN Position à atteindre? : entrer toutes les coordonnées utiles au prépositionnement du palpeur à l'aide des touches de sélection des axes ou du clavier ASCII. Plage de programmation : -99999,9999 à 99999,9999 Pour mettre fin à la programmation, appuyer sur la touche ENT 514 Exemple 67 TCH PROBE 0.0 PLAN DE REFERENCE Q5 X68 TCH PROBE 0.1 X+5 Y+0 Z-5 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | PLAN DE REFERENCE polaire (cycle 1, option 17) 17.3 PLAN DE REFERENCE polaire (cycle 1, option 17) Mode opératoire du cycle Le cycle palpeur 1 détermine une position au choix sur la pièce, quel que soit le sens de palpage. 1 Le palpeur approche la pré-position 1 définie dans le cycle en avance rapide (valeur de la colonne FMAX), en décrivant un mouvement en 3D. 2 Le palpeur procède ensuite à l'opération de palpage en tenant compte de l'avance de palpage (colonne F). Au cours de la procédure de palpage, la commande déplace le palpeur simultanément sur 2 axes (en fonction de l'angle de palpage). Le sens de palpage doit être défini dans le cycle par le biais d'angles polaires. 3 Une fois que la commande a acquis la position, le palpeur revient au point de départ de la procédure de palpage. La commande mémorise aux paramètres Q115 à Q119 les coordonnées de la position à laquelle se trouve le palpeur au moment du signal de commutation. Attention lors de la programmation ! REMARQUE Attention, risque de collision ! La commande amène le palpeur à la pré-position programmée dans le cycle selon un mouvement tridimensionnel, en avance rapide. Selon la position à laquelle se trouve l'outil avant le déplacement, il existe un risque de collision ! Prépositionner de manière à éviter toute collision lors de l'abordage de la préposition programmée Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . L'axe de palpage défini dans le cycle détermine le plan de palpage. Axe de palpage X : plan X/Y Axe de palpage Y : plan Y/Z Axe de palpage Z : plan Z/X HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 515 17 Cycles palpeurs : contrôle automatique des pièces | PLAN DE REFERENCE polaire (cycle 1, option 17) Paramètres du cycle Axe de palpage? : renseigner l'axe de palpage à l'aide des touches d'axes ou du clavier alphabétique. Valider avec la touche ENT. Plage de programmation : X, Y ou Z Angle de palpage? : angle de déplacement du palpeur par rapport à l'axe de palpage Plage de programmation : -180,0000 à 180,0000 Position à atteindre? : entrer toutes les coordonnées utiles au prépositionnement du palpeur à l'aide des touches de sélection des axes ou du clavier ASCII. Plage de programmation : -99999,9999 à 99999,9999 Pour mettre fin à la programmation, appuyer sur la touche ENT 516 Exemple 67 TCH PROBE 1.0 PT DE REF POLAIRE 68 TCH PROBE 1.1 ANGLE X : +30 69 TCH PROBE 1.2 X+5 Y+0 Z-5 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : contrôle automatique des pièces | MESURE ANGLE (cycle 420, DIN/ISO : G420, option 17) 17.4 MESURE ANGLE (cycle 420, DIN/ISO : G420, option 17) Mode opératoire du cycle Le cycle palpeur 420 détermine l'angle formé par n'importe quelle droite et l'axe principal du plan d'usinage. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au point de palpage programmé 1, selon la logique de positionnement définie (voir "Exécuter les cycles palpeurs", Page 389). La somme de Q320, SET_UP et du rayon de la bille de palpage est prise en compte dans chaque sens de palpage, lors du palpage. Lorsque le mouvement de palpage commence, le centre de la bille de palpage est décalé, à partir du point de palpage, de la valeur de cette somme dans le sens de palpage. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée 3 Le palpeur est ensuite amené au point de palpage 2 et exécute la deuxième procédure de palpage. 4 La commande ramène le palpeur à la hauteur de sécurité et mémorise l'angle ainsi déterminé au paramètre Q suivant : Numéros de paramètres Signification Q150 Angle mesuré se référant à l'axe principal du plan d'usinage Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Si l'axe de palpage correspond à l'axe de mesure, alors vous pouvez mesurer l'angle dans le sens de l'axe A ou de l'axe B : Si l'angle doit être mesuré dans le sens de l'axe A, vous devez programmer des valeurs de paramètres comme suit : Q263 égal à Q265 et Q264 différent de Q266. Si l'angle doit être mesuré dans le sens de l'axe B, vous devez programmer des valeurs de paramètres comme suit : Q263 différent de Q265 et Q264 égal à Q266. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 517 17 17 Cycles palpeurs : contrôle automatique des pièces | MESURE ANGLE (cycle 420, DIN/ISO : G420, option 17) Paramètres du cycle Q263 1er point mesure sur 1er axe? (en absolu) : coordonnée du premier point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q264 1er point mesure sur 2ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q265 2ème point mesure sur 1er axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q266 2ème point mesure sur 2ème axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe auxiliaire du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q272 Axe mes. (1...3, 1=axe princ.)? : axe sur lequel la mesure doit être effectuée : 1 : axe principal = axe de mesure 2 : axe auxiliaire = axe de mesure 3 : axe du palpeur = axe de mesure Q267 Sens déplacement 1 (+1=+/-1=-)? : sens dans lequel le palpeur doit s’approcher de la pièce : -1 : sens de déplacement négatif +1 : sens de déplacement positif Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de mesure et la bille de palpage. Le mouvement de palpage commence aussi lors du palpage dans le sens de l'axe d'outil, avec une valeur décalage correspondant à la somme de Q320, SET_UP et du rayon de la bille de palpage. Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 518 Exemple 5 TCH PROBE 420 MESURE ANGLE Q263=+10 ;1ER POINT 1ER AXE Q264=+10 ;1ER POINT 2EME AXE Q265=+15 ;2EME POINT 1ER AXE Q266=+95 ;2EME POINT 2EME AXE Q272=1 ;AXE DE MESURE Q267=-1 ;SENS DEPLACEMENT Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+10 ;HAUTEUR DE SECURITE Q301=1 ;DEPLAC. HAUT. SECU. Q281=1 ;PROCES-VERBAL MESURE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : contrôle automatique des pièces | MESURE ANGLE (cycle 420, DIN/ISO : G420, option 17) Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q281 Procès-verb. mes. (0/1/2)? : vous définissez ici si la commande doit générer un procès-verbal de mesure : 0 : ne pas générer un procès-verbal de mesure 1 : générer un procès-verbal de mesure : la commande mémorise le fichier de procèsverbal de mesure TCHPR420.TXT dans le même répertoire que le programme CN correspondant. 2 : interrompre l'exécution du programme et émettre le procès-verbal de mesure sur l'écran de la commande (vous pouvez ensuite poursuivre le programme CN avec Start CN) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 519 17 17 Cycles palpeurs : contrôle automatique des pièces | MESURER TROU (cycle 421, DIN/ISO : G421, option 17) 17.5 MESURER TROU (cycle 421, DIN/ISO : G421, option 17) Mode opératoire du cycle Le cycle de palpage 421 détermine le centre et le diamètre d'un perçage (poche circulaire). Si vous définissez les valeurs de tolérance correspondantes dans le cycle, la commande procède à une comparaison entre les valeurs nominales et effectives et mémorise les écarts dans les paramètres Q. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389) définie. La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée. La commande détermine automatiquement le sens du palpage en fonction de l'angle de départ programmé. 3 Le palpeur suit ensuite une trajectoire circulaire, soit à la hauteur de mesure, soit à la hauteur de sécurité, pour se positionner au point de palpage suivant 2 où il exécute la deuxième opération de palpage. 4 La commande positionne le palpeur au point de palpage 3 , puis au point de palpage 4 . Là, elle procède à la troisième et à la quatrième procédure de palpage. 5 Pour finir, la commande ramène le palpeur à la hauteur de sécurité et mémorise les valeurs effectives et les écarts aux paramètres Q suivants : Numéros de paramètres Signification Q151 Valeur effective centre, axe principal Q152 Valeur effective centre, axe secondaire Q153 Valeur effective diamètre Q161 Ecart centre axe principal Q162 Ecart centre axe secondaire Q163 Ecart de diamètre 520 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : contrôle automatique des pièces | MESURER TROU (cycle 421, DIN/ISO : G421, option 17) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Plus l'incrément angulaire programmé est petit et plus la cote du trou calculée par la commande sera imprécise. Valeur de saisie minimale : 5° Les paramètres Q498 et Q531 n'ont aucune influence sur ce cycle. Vous n'avez rien d'autre à programmer. Ces paramètres ont uniquement été intégrés pour des raisons de compatibilité. Par exemple, si vous importez un programme de la commande de fraisage-tournage TNC 640, aucun message d'erreur ne s'affichera. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 521 17 17 Cycles palpeurs : contrôle automatique des pièces | MESURER TROU (cycle 421, DIN/ISO : G421, option 17) Paramètres du cycle Q273 Centre sur 1er axe (val. nom.)? (en absolu) : centre du trou dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q274 Centre sur 2èmr axe (val. nom.)? (en absolu) : centre du trou dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q262 Diamètre nominal? : entrer le diamètre du trou. Plage de programmation : 0 à 99999,9999 Q325 Angle initial? (en absolu) : angle entre l'axe principal du plan d'usinage et le premier point de palpage. Plage de programmation : -360,000 à 360,000 Q247 Incrément angulaire? (en incrémental) : angle compris entre deux points de mesure ; le signe de l'incrément angulaire détermine le sens de rotation (- = sens horaire) pour le déplacement du palpeur vers le point de mesure suivant. Si vous souhaitez mesurer des secteurs circulaires, programmez un incrément angulaire inférieur à 90°. Plage de programmation : -120,000 à 120,000 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 522 Exemple 5 TCH PROBE 421 MESURE TROU Q273=+50 ;CENTRE 1ER AXE Q274=+50 ;CENTRE 2EME AXE Q262=75 ;DIAMETRE NOMINAL Q325=+0 ;ANGLE INITIAL Q247=+60 ;INCREMENT ANGULAIRE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=1 ;DEPLAC. HAUT. SECU. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : contrôle automatique des pièces | MESURER TROU (cycle 421, DIN/ISO : G421, option 17) Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q275 Cote max. du trou? : le plus grand diamètre de trou admissible (poche circulaire). Plage de programmation : 0 à 99999,9999 Q276 Cote min. du trou? : le plus petit diamètre de trou admissible (poche circulaire). Plage de programmation : 0 à 99999,9999 Q279 Tolérance centre 1er axe? : écart de position admissible sur l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q280 Tolérance centre 2ème axe? : écart de position admissible sur l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q281 Procès-verb. mes. (0/1/2)? : vous définissez ici si la commande doit, ou non, générer un procès-verbal de mesure : 0 : ne pas générer de procès-verbal de mesure 1 : générer un procès-verbal de mesure : la commande enregistre par défaut le fichier journal TCHPR421.TXT dans le même répertoire que le programme concerné. 2 : interrompre l'exécution du programme et afficher le procès-verbal à l'écran de la commande. Poursuivre le programme CN avec Start CN Q275=75,12;COTE MAX. Q276=74,95;COTE MIN. Q279=0,1 ;TOLERANCE 1ER CENTRE Q280=0,1 ;TOLERANCE 2ND CENTRE Q281=1 ;PROCES-VERBAL MESURE Q309=0 ;ARRET PGM SI ERREUR Q330=0 ;OUTIL Q423=4 ;NOMBRE DE PALPAGES Q365=1 ;TYPE DEPLACEMENT Q498=0 ;INVERSER OUTIL Q531=0 ;ANGLE DE REGLAGE Q309 Arrêt PGM si tolérance dépassée? : vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur en cas de dépassement de la tolérance : 0 : ne pas interrompre le programme, ni émettre de message d'erreur 1 : interrompre l'exécution de programme et émettre un message d'erreur HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 523 17 17 Cycles palpeurs : contrôle automatique des pièces | MESURER TROU (cycle 421, DIN/ISO : G421, option 17) Q330 Outil pour surveillance? : vous définissez ici si la commande doit ou non procéder à une surveillance de l'outil (voir "Surveillance de l'outil", Page 512). Plage de programmation : 0 à 32767,9 ou le nom d'outil avec 16 caractères maximum 0 : surveillance inactive >0 : numéro ou nom de l'outil avec lequel la commande a exécuté l'usinage. Vous pouvez utiliser les softkeys pour reprendre directement un outil figurant dans le tableau d'outils. Q423 Nombre de palpages plan (4/3)? : vous définissez ici si la commande doit mesurer le cercle en 4 ou 3 palpages : 4 : utiliser 4 points de mesure (paramètre standard) 3 : utiliser 4 points de mesure Q365 Type déplacement? ligne=0/arc=1 : vous définissez ici la fonction de contournage qui doit être utilisée pour déplacer l'outil entre les points de mesure, lorsque le déplacement se fait à la hauteur de sécurité(Q301=1) : 0 : déplacement en ligne droite entre chaque usinage 1 : déplacement en cercle, sur le diamètre du cercle primitif, entre chaque usinage Q365 Type déplacement? ligne=0/arc=1 : vous définissez ici la fonction de contournage qui doit être utilisée pour déplacer l'outil entre les points de mesure, lorsque le déplacement se fait à la hauteur de sécurité (Q301=1) : 0 : déplacement en ligne droite entre chaque usinage 1 : déplacement en cercle, sur le diamètre du cercle primitif, entre chaque usinage Les paramètres Q498 et Q531 n'ont aucune influence sur ce cycle. Vous n'avez rien d'autre à programmer. Ces paramètres ont uniquement été intégrés pour des raisons de compatibilité. Par exemple, si vous importez un programme de la commande de fraisage-tournage TNC 640, aucun message d'erreur ne s'affichera. 524 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | MESURE EXTERIEUR CERCLE (cycle 422, DIN/ISO : G422, option 17) 17.6 MESURE EXTERIEUR CERCLE (cycle 422, DIN/ISO : G422, option 17) Mode opératoire du cycle Le cycle palpeur 422 détermine le centre et le diamètre d'un tenon circulaire. Si vous définissez les valeurs de tolérance correspondantes dans le cycle, la commande procède à une comparaison entre les valeurs nominales et effectives et mémorise les écarts dans les paramètres Q. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389) définie. La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée. La commande détermine automatiquement le sens du palpage en fonction de l'angle de départ programmé. 3 Le palpeur suit ensuite une trajectoire circulaire, soit à la hauteur de mesure, soit à la hauteur de sécurité, pour se positionner au point de palpage suivant 2 où il exécute la deuxième opération de palpage. 4 La commande positionne le palpeur au point de palpage 3 , puis au point de palpage 4 . Là, elle procède à la troisième et à la quatrième procédure de palpage. 5 Pour finir, la commande ramène le palpeur à la hauteur de sécurité et mémorise les valeurs effectives et les écarts aux paramètres Q suivants : Numéros de paramètres Signification Q151 Valeur effective centre, axe principal Q152 Valeur effective centre, axe secondaire Q153 Valeur effective diamètre Q161 Ecart centre, axe principal Q162 Ecart centre, axe secondaire Q163 Ecart de diamètre HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 525 17 Cycles palpeurs : contrôle automatique des pièces | MESURE EXTERIEUR CERCLE (cycle 422, DIN/ISO : G422, option 17) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Plus l'incrément angulaire programmé est petit et plus la cote du tenon calculée par la commande sera imprécise. Valeur de saisie minimale<:hs>: 5° Les paramètres Q498 et Q531 n'ont aucune influence sur ce cycle. Vous n'avez rien d'autre à programmer. Ces paramètres ont uniquement été intégrés pour des raisons de compatibilité. Par exemple, si vous importez un programme de la commande de fraisage-tournage TNC 640, aucun message d'erreur ne s'affichera. 526 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | MESURE EXTERIEUR CERCLE (cycle 422, DIN/ISO : G422, option 17) Paramètres du cycle Q273Centre sur 1er axe (val. nom.)? (en absolu) : centre du tenon dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q274 Centre sur 2èmr axe (val. nom.)? (en absolu) : centre du tenon dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q262 Diamètre nominal? : entrer le diamètre du tenon. Plage de programmation : 0 à 99999,9999 Q325 Angle initial? (en absolu) : angle entre l'axe principal du plan d'usinage et le premier point de palpage. Plage de programmation : -360,000 à 360,000 Q247 Incrément angulaire? (en incrémental) : angle compris entre deux points de mesure ; le signe de l'incrément angulaire détermine le sens de rotation (- = sens horaire). Si vous souhaitez mesurer des secteurs circulaires, programmez un incrément angulaire inférieur à 90°. Plage de programmation : -120,0000 à 120,0000 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 422 MESURE EXT. CERCLE Q273=+50 ;CENTRE 1ER AXE Q274=+50 ;CENTRE 2EME AXE Q262=75 ;DIAMETRE NOMINAL Q325=+90 ;ANGLE INITIAL Q247=+30 ;INCREMENT ANGULAIRE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+10 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q277=35,15;COTE MAX. Q278=34,9 ;COTE MIN. Q279=0,05 ;TOLERANCE 1ER CENTRE Q280=0,05 ;TOLERANCE 2ND CENTRE 527 17 Cycles palpeurs : contrôle automatique des pièces | MESURE EXTERIEUR CERCLE (cycle 422, DIN/ISO : G422, option 17) Q277 Cote max. du tenon? : le plus grand diamètre admissible pour le tenon. Plage de programmation : 0 à 99999,9999 Q278 Cote min. du tenon? : le plus petit diamètre admissible pour le tenon. Plage de programmation : 0 à 99999,9999 Q279 Tolérance centre 1er axe? : écart de position admissible sur l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q280 Tolérance centre 2ème axe? : écart de position admissible sur l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q281 Procès-verb. mes. (0/1/2)? : vous définissez ici si la commande doit générer un procès-verbal de mesure : 0 : ne pas générer un procès-verbal de mesure 1 : générer un procès-verbal de mesure : la commande mémorise le fichier de procèsverbal de mesure TCHPR422.TXT dans le même répertoire que le programme CN correspondant. 2 : interrompre l'exécution du programme et émettre un procès-verbal de mesure sur l'écran de la commande. Poursuivre le programme CN avec Start CN Q281=1 ;PROCES-VERBAL MESURE Q309=0 ;ARRET PGM SI ERREUR Q330=0 ;OUTIL Q423=4 ;NOMBRE DE PALPAGES Q365=1 ;TYPE DEPLACEMENT Q498=0 ;INVERSER OUTIL Q531=0 ;ANGLE DE REGLAGE Q309 Arrêt PGM si tolérance dépassée? : vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur en cas de dépassement de la tolérance : 0 : ne pas interrompre le programme, ni émettre de message d'erreur 1 : interrompre l'exécution de programme et émettre un message d'erreur Q330 Outil pour surveillance? : vous définissez ici si la commande doit ou non procéder à une surveillance de l'outil (voir "Surveillance de l'outil", Page 512). Plage de saisie 0 à 32767,9, sinon nom d'outil avec 16 caractères max. 0 : surveillance non active >0 : numéro d'outil dans le tableau d'outils TOOL.T Q423 Nombre de palpages plan (4/3)? : vous définissez ici si la commande doit mesurer le cercle en 4 ou 3 palpages : 4 : utiliser 4 points de mesure (paramètre standard) 3 : utiliser 4 points de mesure 528 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | MESURE EXTERIEUR CERCLE (cycle 422, DIN/ISO : G422, option 17) Q365 Type déplacement? ligne=0/arc=1 : vous définissez ici la fonction de contournage qui doit être utilisée pour déplacer l'outil entre les points de mesure, lorsque le déplacement se fait à la hauteur de sécurité(Q301=1) : 0 : déplacement en ligne droite entre chaque usinage 1 : déplacement en cercle, sur le diamètre du cercle primitif, entre chaque usinage Les paramètres Q498 et Q531 n'ont aucune influence sur ce cycle. Vous n'avez rien d'autre à programmer. Ces paramètres ont uniquement été intégrés pour des raisons de compatibilité. Par exemple, si vous importez un programme de la commande de fraisage-tournage TNC 640, aucun message d'erreur ne s'affichera. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 529 17 Cycles palpeurs : contrôle automatique des pièces | MESURE RECTANGLE INTERIEUR (cycle 423, DIN/ISO : G423, option 17) 17.7 MESURE RECTANGLE INTERIEUR (cycle 423, DIN/ISO : G423, option 17) Mode opératoire du cycle Le cycle palpeur 423 détermine le centre, la longueur et la largeur d'une poche rectangulaire. Si vous définissez les valeurs de tolérance correspondantes dans le cycle, la commande procède à une comparaison entre les valeurs nominales et effectives et mémorise les écarts dans les paramètres Q. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389) définie. La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée 3 Puis, le palpeur se déplace soit paraxialement à la hauteur de mesure, soit linéairement à la hauteur de sécurité, jusqu'au point de palpage suivant 2 où il exécute la deuxième opération de palpage. 4 La commande positionne le palpeur au point de palpage 3 , puis au point de palpage 4 . Là, elle procède à la troisième et à la quatrième procédure de palpage. 5 Pour finir, la commande ramène le palpeur à la hauteur de sécurité et mémorise les valeurs effectives et les écarts aux paramètres Q suivants : Numéros de paramètres Signification Q151 Valeur effective centre, axe principal Q152 Valeur effective centre, axe secondaire Q154 Valeur effective longueur latérale, axe principal Q155 Valeur effective longueur latérale, axe auxiliaire Q161 Ecart centre, axe principal Q162 Ecart centre, axe secondaire Q164 Ecart longueur du côté dans l'axe principal Q165 Ecart longueur du côté dans l'axe auxiliaire 530 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | MESURE RECTANGLE INTERIEUR (cycle 423, DIN/ISO : G423, option 17) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Si les dimensions de la poche et la distance d'approche ne permettent pas d'effectuer un prépositionnement à proximité des points de palpage, la commande procède toujours au palpage en partant du centre de la poche. Dans ce cas, le palpeur ne se déplace pas à la hauteur de sécurité entre les quatre points de mesure. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 531 17 Cycles palpeurs : contrôle automatique des pièces | MESURE RECTANGLE INTERIEUR (cycle 423, DIN/ISO : G423, option 17) Paramètres du cycle Q273 Centre sur 1er axe (val. nom.)? (en absolu) : centre de la poche dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q274 Centre sur 2èmr axe (val. nom.)? (en absolu) : centre de la poche dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q282 1er côté (valeur nominale)? : longueur de la poche, parallèle à l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q283 2ème côté (valeur nominale)? : longueur de la poche, parallèle à l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q284 Cote max. 1er côté? : la plus grande longueur de poche admissible. Plage de programmation : 0 à 99999,9999 Q285 Cote min. 1er côté? : la plus petite longueur de poche admissible. Plage de programmation : 0 à 99999,9999 Q286 Cote max. 2ème côté? : la plus grande largeur de poche admissible. Plage de programmation : 0 à 99999,9999 532 Exemple 5 TCH PROBE 423 MESURE INT. RECTANG. Q273=+50 ;CENTRE 1ER AXE Q274=+50 ;CENTRE 2EME AXE Q282=80 ;1ER COTE Q283=60 ;2EME COTE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+10 ;HAUTEUR DE SECURITE Q301=1 ;DEPLAC. HAUT. SECU. Q284=0 ;COTE MAX. 1ER COTE Q285=0 ;COTE MIN. 1ER COTE Q286=0 ;COTE MAX. 2EME COTE Q287=0 ;COTE MIN. 2EME COTE Q279=0 ;TOLERANCE 1ER CENTRE Q280=0 ;TOLERANCE 2ND CENTRE Q281=1 ;PROCES-VERBAL MESURE Q309=0 ;ARRET PGM SI ERREUR Q330=0 ;OUTIL HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | MESURE RECTANGLE INTERIEUR (cycle 423, DIN/ISO : G423, option 17) Q287 Cote min. 2ème côté? : la plus petite largeur de poche admissible. Plage de programmation : 0 à 99999,9999 Q279 Tolérance centre 1er axe? : écart de position admissible sur l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q280 Tolérance centre 2ème axe? : écart de position admissible sur l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q281 Procès-verb. mes. (0/1/2)? : vous définissez ici si la commande doit générer un procès-verbal de mesure : 0 : ne pas générer un procès-verbal de mesure 1 : générer un procès-verbal de mesure : la commande mémorise le fichier de procèsverbal de mesure TCHPR423.TXT dans le même répertoire que le programme CN correspondant. 2 : interrompre l'exécution du programme et émettre un procès-verbal de mesure sur l'écran de la commande.Poursuivre le programme CN avec Start CN Q309 Arrêt PGM si tolérance dépassée? : vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur en cas de dépassement de la tolérance : 0 : ne pas interrompre le programme, ni émettre de message d'erreur 1 : interrompre l'exécution de programme et émettre un message d'erreur Q330 Outil pour surveillance? : vous définissez ici si la commande doit ou non procéder à une surveillance de l'outil (voir "Surveillance de l'outil", Page 512). Plage de saisie 0 à 32767,9, sinon nom d'outil avec 16 caractères max. 0 : surveillance non active >0 : numéro d'outil dans le tableau d'outils TOOL.T HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 533 17 Cycles palpeurs : contrôle automatique des pièces | MESURE RECTANGLE EXTERIEUR(cycle 424, DIN/ISO : G424, option 17) 17.8 MESURE RECTANGLE EXTERIEUR(cycle 424, DIN/ISO : G424, option 17) Mode opératoire du cycle Le cycle palpeur 424 détermine le centre ainsi que la longueur et la largeur d'un tenon rectangulaire. Si vous définissez les valeurs de tolérance correspondantes dans le cycle, la commande procède à une comparaison entre les valeurs nominales et effectives et mémorise les écarts dans les paramètres Q. 1 La commande positionne le palpeur au point de palpage 1 en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389). La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée 3 Puis, le palpeur se déplace soit paraxialement à la hauteur de mesure, soit linéairement à la hauteur de sécurité, jusqu'au point de palpage suivant 2 où il exécute la deuxième opération de palpage. 4 La commande positionne le palpeur au point de palpage 3 , puis au point de palpage 4 . Là, elle procède à la troisième et à la quatrième procédure de palpage. 5 Pour finir, la commande ramène le palpeur à la hauteur de sécurité et mémorise les valeurs effectives et les écarts aux paramètres Q suivants : Numéros de paramètres Signification Q151 Valeur effective centre, axe principal Q152 Valeur effective centre, axe secondaire Q154 Valeur effective longueur latérale, axe principal Q155 Valeur effective longueur latérale, axe auxiliaire Q161 Ecart centre, axe principal Q162 Ecart centre, axe secondaire Q164 Ecart longueur du côté dans l'axe principal Q165 Ecart longueur du côté dans l'axe auxiliaire 534 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | MESURE RECTANGLE EXTERIEUR(cycle 424, DIN/ISO : G424, option 17) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Paramètres du cycle Q273Centre sur 1er axe (val. nom.)? (en absolu) : centre du tenon dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q274 Centre sur 2èmr axe (val. nom.)? (en absolu) : centre du tenon dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q282 1er côté (valeur nominale)? : longueur du tenon, parallèle à l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q283 2ème côté (valeur nominale)? : longueur du tenon, parallèle à l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q284 Cote max. 1er côté? : la plus grande longueur de tenon admissible. Plage de programmation : 0 à 99999,9999 Q285 Cote min. 1er côté? : la plus petite longueur de tenon admissible. Plage de programmation : 0 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 424 MESURE EXT. RECTANG. Q273=+50 ;CENTRE 1ER AXE Q274=+50 ;2EME CENTRE 2EME AXE Q282=75 ;1ER COTE Q283=35 ;2EME COTE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q284=75,1 ;COTE MAX. 1ER COTE Q285=74,9 ;COTE MIN. 1ER COTE Q286=35 ;COTE MAX. 2EME COTE Q287=34,95;COTE MIN. 2EME COTE 535 17 Cycles palpeurs : contrôle automatique des pièces | MESURE RECTANGLE EXTERIEUR(cycle 424, DIN/ISO : G424, option 17) Q286 Cote max. 2ème côté? : la plus grande largeur de tenon admissible. Plage de programmation : 0 à 99999,9999 Q287 Cote min. 2ème côté? : la plus petite longueur de tenon admissible. Plage de programmation : 0 à 99999,9999 Q279 Tolérance centre 1er axe? : écart de position admissible sur l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q280 Tolérance centre 2ème axe? : écart de position admissible sur l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q281 Procès-verb. mes. (0/1/2)?: vous définissez ici si la commande doit générer un procès-verbal de mesure : 0 : ne pas générer un procès-verbal de mesure 1 : générer un procès-verbal de mesure : la commande mémorise le fichier de procèsverbal de mesure TCHPR424.TXT dans le même répertoire que le fichier .h 2 : interrompre l'exécution du programme et émettre le procès-verbal de mesure sur l'écran de la commande. Poursuivre le programme CN avec Start CN Q279=0,1 ;TOLERANCE 1ER CENTRE Q280=0,1 ;TOLERANCE 2ND CENTRE Q281=1 ;PROCES-VERBAL MESURE Q309=0 ;ARRET PGM SI ERREUR Q330=0 ;OUTIL Q309 Arrêt PGM si tolérance dépassée? : vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur en cas de dépassement de la tolérance : 0 : ne pas interrompre le programme, ni émettre de message d'erreur 1 : interrompre l'exécution de programme et émettre un message d'erreur Q330 Outil pour surveillance? : vous définissez ici si la commande doit ou non procéder à une surveillance de l'outil (voir "Surveillance de l'outil", Page 512). Plage de programmation : 0 à 32767,9 ou le nom d'outil avec 16 caractères maximum 0 : surveillance inactive >0 : numéro ou nom de l'outil avec lequel la commande a exécuté l'usinage. Vous pouvez utiliser les softkeys pour reprendre directement un outil figurant dans le tableau d'outils. 536 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | MESURE LARGEUR INTERIEUR (cycle 425, DIN/ISO : G425, Option #17) 17.9 MESURE LARGEUR INTERIEUR (cycle 425, DIN/ISO : G425, Option #17) Mode opératoire du cycle Le cycle palpeur 425 détermine la position et la largeur d'une rainure (poche). Si vous définissez les valeurs de tolérance correspondantes dans le cycle, la commande compare la valeur effective à la valeur nominale et mémorise l'écart dans un paramètre système. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement "Exécuter les cycles palpeurs" définie. La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée. Le premier palpage s'effectue toujours dans le sens positif de l'axe programmé. 3 Si vous programmez un décalage pour la deuxième mesure, la commande amène le palpeur (éventuellement à la hauteur de sécurité) au point de palpage 2 suivant pour exécuter la deuxième procédure de palpage. Si les longueurs nominales sont importantes, la commande amène le palpeur au deuxième point de palpage en avance rapide. Si vous n'indiquez pas de décalage, la commande mesure directement la largeur dans le sens inverse. 4 Pour finir, la commande ramène le palpeur à la hauteur de sécurité et mémorise l'écart aux paramètres Q suivants : Numéros de paramètres Signification Q156 Valeur effective longueur mesurée Q157 Valeur effective de l'axe central Q166 Ecart de la longueur mesurée Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 537 17 Cycles palpeurs : contrôle automatique des pièces | MESURE LARGEUR INTERIEUR (cycle 425, DIN/ISO : G425, Option #17) Paramètres du cycle Q328 Point initial 1er axe? (en absolu) : point de départ de la procédure de palpage dans l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q329 Point initial 2ème axe? (en absolu) : point de départ de la procédure de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q310 Décalage pour 2ème mesure (+/-)? (en incrémental) : valeur correspondant au décalage du palpeur avant qu'il effectue la deuxième mesure. Si vous programmez 0, la commande ne décalera pas le palpeur. Plage de programmation : -99999,9999 à 99999,9999 Q272 Axe de mesure (1=1er / 2=2ème)? : axe du plan d'usinage sur lequel la mesure doit avoir lieu : 1 : axe principal = axe de mesure 2 : axe auxiliaire = axe de mesure Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q311 Longueur nominale? : valeur nominale correspondant à la longueur à mesurer. Plage de programmation : 0 à 99999,9999 Q288 Cote max.? : la plus grande longueur autorisée. Plage de programmation : 0 à 99999,9999 Q289 Cote min.? : la plus petite longueur autorisée. Plage de programmation : 0 à 99999,9999 Q281 Procès-verb. mes. (0/1/2)? : vous définissez ici si la commande doit générer un procès-verbal de mesure : 0 : ne pas générer un procès-verbal de mesure 1 : générer un procès-verbal de mesure : la commande mémorise le fichier de procèsverbal de mesure TCHPR425.TXT dans le même répertoire que le fichier .h 2 : interrompre l'exécution du programme et émettre le procès-verbal de mesure sur l'écran de la commande. Poursuivre le programme CN avec Start CN 538 Exemple 5 TCH PROBE 425 MESURE INT. RAINURE Q328=+75 ;PT INITIAL 1ER AXE Q329=-12.5 ;PT INITIAL 2EME AXE Q310=+0 ;DECALAGE 2EME MESURE Q272=1 ;AXE DE MESURE Q261=-5 ;HAUTEUR DE MESURE Q260=+10 ;HAUTEUR DE SECURITE Q311=25 ;LONGUEUR NOMINALE Q288=25.05;COTE MAX. Q289=25 ;COTE MIN. Q281=1 ;PROCES-VERBAL MESURE Q309=0 ;ARRET PGM SI ERREUR Q330=0 ;OUTIL Q320=0 ;DISTANCE D'APPROCHE Q301=0 ;DEPLAC. HAUT. SECU. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | MESURE LARGEUR INTERIEUR (cycle 425, DIN/ISO : G425, Option #17) Q309 Arrêt PGM si tolérance dépassée? : vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur en cas de dépassement de la tolérance : 0 : ne pas interrompre le programme, ni émettre de message d'erreur 1 : interrompre l'exécution de programme et émettre un message d'erreur Q330 Outil pour surveillance? : vous définissez ici si la commande doit ou non procéder à une surveillance de l'outil (voir "Surveillance de l'outil", Page 512). Plage de programmation : 0 à 32767,9 ou le nom d'outil avec 16 caractères maximum 0 : surveillance inactive >0 : numéro ou nom de l'outil avec lequel la commande a exécuté l'usinage. Vous pouvez utiliser les softkeys pour reprendre directement un outil figurant dans le tableau d'outils. Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs) et uniquement lorsque le point d'origine est palpé dans l'axe de palpage. Plage de programmation : 0 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 539 17 Cycles palpeurs : contrôle automatique des pièces | MESURE TRAVERSE EXTERIEURE (cycle 426, DIN/ISO : G426, option 17) 17.10 MESURE TRAVERSE EXTERIEURE (cycle 426, DIN/ISO : G426, option 17) Mode opératoire du cycle Le cycle palpeur 426 détermine la position et la largeur d'un îlot. Si vous définissez les valeurs de tolérance correspondantes dans le cycle, la commande procède à une comparaison entre les valeurs nominales et effectives et mémorise les écarts dans les paramètres Q. 1 La commande positionne le palpeur au point de palpage 1 en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement (voir "Exécuter les cycles palpeurs", Page 389). La commande calcule les points de palpage à partir des données du cycle et de la distance d'approche programmée dans la colonne SET_UP du tableau de palpeurs. 2 Le palpeur se déplace ensuite à la hauteur de sécurité indiquée (colonne F) et procède au premier palpage avec l'avance de palpage programmée. Le premier palpage est toujours effectué dans le sens négatif de l'axe programmé. 3 Le palpeur se déplace ensuite à la hauteur de sécurité, au point de palpage suivant, et effectue la deuxième procédure de palpage. 4 Pour finir, la commande ramène le palpeur à la hauteur de sécurité et mémorise l'écart aux paramètres Q suivants : Numéros de paramètres Signification Q156 Valeur effective longueur mesurée Q157 Valeur effective de la position milieu Q166 Ecart de la longueur mesurée Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. 540 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | MESURE TRAVERSE EXTERIEURE (cycle 426, DIN/ISO : G426, option 17) Paramètres du cycle Q263 1er point mesure sur 1er axe? (en absolu) : coordonnée du premier point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q264 1er point mesure sur 2ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q265 2ème point mesure sur 1er axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q266 2ème point mesure sur 2ème axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe auxiliaire du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q272 Axe de mesure (1=1er / 2=2ème)? : axe du plan d'usinage sur lequel la mesure doit avoir lieu : 1 : axe principal = axe de mesure 2 : axe auxiliaire = axe de mesure Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q311 Longueur nominale? : valeur nominale correspondant à la longueur à mesurer. Plage de programmation : 0 à 99999,9999 Q288 Cote max.? : la plus grande longueur autorisée. Plage de programmation : 0 à 99999,9999 Q289 Cote min.? : la plus petite longueur autorisée. Plage de programmation : 0 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 426 MESURE EXT. TRAVERSE Q263=+50 ;1ER POINT 1ER AXE Q264=+25 ;1ER POINT 2EME AXE Q265=+50 ;2EME POINT 1ER AXE Q266=+85 ;2EME POINT 2EME AXE Q272=2 ;AXE DE MESURE Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q311=45 ;LONGUEUR NOMINALE Q288=45 ;COTE MAX. Q289=44.95;COTE MIN. Q281=1 ;PROCES-VERBAL MESURE Q309=0 ;ARRET PGM SI ERREUR Q330=0 ;OUTIL 541 17 Cycles palpeurs : contrôle automatique des pièces | MESURE TRAVERSE EXTERIEURE (cycle 426, DIN/ISO : G426, option 17) Q281 Procès-verb. mes. (0/1/2)? : vous définissez ici si la commande doit générer un procès-verbal de mesure : 0 : ne pas générer un procès-verbal de mesure 1 : générer un procès-verbal de mesure : la commande mémorise le fichier de procèsverbal de mesure TCHPR426.TXT dans le même répertoire que le programme CN correspondant. 2 : interrompre l'exécution du programme et émettre un procès-verbal de mesure sur l'écran de la commande. Poursuivre le programme CN avec Start CN Q309 Arrêt PGM si tolérance dépassée? : vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur en cas de dépassement de la tolérance : 0 : ne pas interrompre le programme, ni émettre de message d'erreur 1 : interrompre l'exécution de programme et émettre un message d'erreur Q330 Outil pour surveillance? : vous définissez ici si la commande doit ou non procéder à une surveillance de l'outil (voir "Surveillance de l'outil", Page 512). Plage de programmation : 0 à 32767,9 ou le nom d'outil avec 16 caractères maximum 0 : surveillance inactive >0 : numéro ou nom de l'outil avec lequel la commande a exécuté l'usinage. Vous pouvez utiliser les softkeys pour reprendre directement un outil figurant dans le tableau d'outils. 542 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : contrôle automatique des pièces | MESURE COORDONNEE (cycle 427, DIN/ISO : G427, option 17) 17.11 MESURE COORDONNEE (cycle 427, DIN/ISO : G427, option 17) Mode opératoire du cycle Le cycle de palpage 427 détermine une coordonnée sur un axe sélectionnable et mémorise la valeur dans un paramètre Q. Si vous définissez les valeurs de tolérance correspondantes dans le cycle, la commande procède à une comparaison entre les valeurs effectives et les valeurs nominales et mémorise les écarts dans les paramètres système. 1 La CN positionne le palpeur au point de palpage 1 en avance rapide (valeur de la colonne FMAX) et selon la logique de positionnement "Travail avec les cycles palpeurs" définie. La CN décale alors le palpeur de la valeur de la distance d'approche dans le sens inverse du sens de déplacement défini. 2 La commande positionne ensuite le palpeur dans le plan d'usinage en l'amenant au point de palpage 1 programmé, puis mesure la valeur effective sur l'axe sélectionné. 3 Pour finir, la commande retire le palpeur à la hauteur de sécurité et mémorise la coordonnée déterminée au paramètre Q suivant : Numéros de paramètres Signification Q160 Coordonnée mesurée Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Si c'est un axe du plan d'usinage qui est défini comme axe de mesure (Q272 1 ou 2), la commande effectue une correction du rayon de l'outil. Elle s'appuie alors sur le sens de déplacement défini pour déterminer le sens de déplacement (Q267). Si c'est l'axe du palpeur qui est sélectionné comme axe de mesure (Q272 = 3), la commande effectue une correction de la longueur de l'outil. Les paramètres Q498 et Q531 n'ont aucune influence sur ce cycle. Vous n'avez rien d'autre à programmer. Ces paramètres ont uniquement été intégrés pour des raisons de compatibilité. Par exemple, si vous importez un programme de la commande de fraisage-tournage TNC 640, aucun message d'erreur ne s'affichera. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 543 17 17 Cycles palpeurs : contrôle automatique des pièces | MESURE COORDONNEE (cycle 427, DIN/ISO : G427, option 17) Paramètres du cycle Q263 1er point mesure sur 1er axe? (en absolu) : coordonnée du premier point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q264 1er point mesure sur 2ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q272 Axe mes. (1...3, 1=axe princ.)? : axe sur lequel la mesure doit être effectuée : 1 : axe principal = axe de mesure 2 : axe auxiliaire = axe de mesure 3 : axe du palpeur = axe de mesure Q267 Sens déplacement 1 (+1=+/-1=-)? : sens dans lequel le palpeur doit s’approcher de la pièce : -1 : sens de déplacement négatif +1 : sens de déplacement positif Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q281 Procès-verb. mes. (0/1/2)? : vous définissez ici si la commande doit générer un procès-verbal de mesure : 0 : ne pas générer un procès-verbal de mesure 1 : générer un procès-verbal de mesure : la commande mémorise le fichier de procèsverbal de mesure TCHPR427.TXT dans le même répertoire que le programme CN correspondant. 2 : interrompre l'exécution du programme et émettre un procès-verbal de mesure sur l'écran de la commande.Poursuivre le programme CN avec Start CN Exemple 5 TCH PROBE 427 MESURE COORDONNEE Q263=+35 ;1ER POINT 1ER AXE Q264=+45 ;1ER POINT 2EME AXE Q261=+5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q272=3 ;AXE DE MESURE Q267=-1 ;SENS DEPLACEMENT Q260=+20 ;HAUTEUR DE SECURITE Q281=1 ;PROCES-VERBAL MESURE Q288=5.1 ;COTE MAX. Q289=4.95 ;COTE MIN. Q309=0 ;ARRET PGM SI ERREUR Q330=0 ;OUTIL Q498=0 ;INVERSER OUTIL Q531=0 ;ANGLE DE REGLAGE Q288 Cote max.? : la plus grande valeur de mesure admissible. Plage de programmation : -99999,9999 à 99999,9999 Q289 Cote min.? : la plus petite valeur de mesure admissible. Plage de programmation : -99999,9999 à 99999,9999 544 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : contrôle automatique des pièces | MESURE COORDONNEE (cycle 427, DIN/ISO : G427, option 17) Q309 Arrêt PGM si tolérance dépassée? : vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur en cas de dépassement de la tolérance : 0 : ne pas interrompre le programme, ni émettre de message d'erreur 1 : interrompre l'exécution de programme et émettre un message d'erreur Q330 Outil pour surveillance? : vous définissez ici si la commande doit ou non procéder à une surveillance de l'outil (voir "Surveillance de l'outil", Page 512). Plage de programmation : 0 à 32767,9 ou le nom d'outil avec 16 caractères maximum 0 : surveillance inactive >0 : numéro ou nom de l'outil avec lequel la commande a exécuté l'usinage. Vous pouvez utiliser les softkeys pour reprendre directement un outil figurant dans le tableau d'outils. Les paramètres Q498 et Q531 n'ont aucune influence sur ce cycle. Vous n'avez rien d'autre à programmer. Ces paramètres ont uniquement été intégrés pour des raisons de compatibilité. Par exemple, si vous importez un programme de la commande de fraisage-tournage TNC 640, aucun message d'erreur ne s'affichera. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 545 17 17 Cycles palpeurs : contrôle automatique des pièces | MESURE CERCLE DE TROUS (cycle 430, DIN/ISO : G427, option 17) 17.12 MESURE CERCLE DE TROUS (cycle 430, DIN/ISO : G427, option 17) Déroulement du cycle Le cycle palpeur 430 détermine le centre et le diamètre d'un cercle de trous en mesurant trois perçages. Si vous définissez les valeurs de tolérance correspondantes dans le cycle, la commande procède à une comparaison entre les valeurs effectives et les valeurs nominales et mémorise les écarts dans les paramètres système. 1 La commande positionne le palpeur en avance rapide (valeur de la colonne FMAX) au centre du premier trou 1, selon la logique de positionnement définie (voir "Exécuter les cycles palpeurs", Page 389). 2 Le palpeur se déplace ensuite à la hauteur de mesure programmée et enregistre le centre du premier trou en palpant quatre fois. 3 Puis, le palpeur revient à la hauteur de sécurité et se positionne au niveau du centre du deuxième trou 2 programmé. 4 La commande déplace le palpeur à la hauteur de mesure programmée et enregistre le centre du deuxième trou en palpant quatre fois. 5 Puis, le palpeur retourne à la hauteur de sécurité avant de se positionner au centre programmé du troisième trou 3. 6 La commande amène le palpeur à la hauteur de mesure indiquée et enregistre le centre du troisième trou en palpant quatre fois. 7 Pour finir, la commande ramène le palpeur à la hauteur de sécurité et mémorise les valeurs effectives et les écarts aux paramètres Q suivants : Numéros de paramètres Signification Q151 Valeur effective centre, axe principal Q152 Valeur effective centre, axe secondaire Q153 Valeur effective du diamètre du cercle de trous Q161 Ecart centre, axe principal Q162 Ecart centre, axe secondaire Q163 Ecart diamètre du cercle de trous 546 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : contrôle automatique des pièces | MESURE CERCLE DE TROUS (cycle 430, DIN/ISO : G427, option 17) Attention lors de la programmation ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Le cycle 430 n'assure qu'un contrôle des bris d'outil. Il n'effectue pas de correction automatique des outils. Paramètres du cycle Q273 Centre sur 1er axe (val. nom.)? (en absolu) : centre du cercle de trous (valeur nominale) dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q274 Centre sur 2èmr axe (val. nom.)? (en absolu) : centre du cercle de trous (valeur nominale) dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q262 Diamètre nominal? : entrer le diamètre du trou. Plage de programmation : 0 à 99999,9999 Q291 Angle 1er trou? (en absolu) : angle en coordonnées polaires du premier centre de trous dans le plan d'usinage. Plage de programmation : -360,0000 à 360,0000 Q292 Angle 2ème trou? (en absolu) : angle en coordonnées polaires du deuxième centre de trous dans le plan d'usinage. Plage de programmation : -360,0000 à 360,0000 Q293 Angle 3ème trou? (en absolu) : angle en coordonnées polaires du troisième centre de trous dans le plan d'usinage. Plage de programmation : -360,0000 à 360,0000 Q261 Hauteur mesuré dans axe palpage? (en absolu) : coordonnée du centre de la bille (=point de contact) dans l'axe du palpeur sur lequel la mesure doit être effectuée. Plage de programmation : -99999,9999 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q288 Cote max.? : le plus grand diamètre de cercle de trous admissible. Plage de programmation : 0 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 430 MESURE CERCLE TROUS Q273=+50 ;CENTRE 1ER AXE Q274=+50 ;CENTRE 2EME AXE Q262=80 ;DIAMETRE NOMINAL Q291=+0 ;ANGLE 1ER TROU Q292=+90 ;ANGLE 2EME TROU Q293=+180 ;ANGLE 3EME TROU Q261=-5 ;HAUTEUR DE MESURE Q260=+10 ;HAUTEUR DE SECURITE Q288=80.1 ;COTE MAX. Q289=79.9 ;COTE MIN. Q279=0.15 ;TOLERANCE 1ER CENTRE Q280=0.15 ;TOLERANCE 2ND CENTRE 547 17 17 Cycles palpeurs : contrôle automatique des pièces | MESURE CERCLE DE TROUS (cycle 430, DIN/ISO : G427, option 17) Q289 Cote min.? : le plus petit diamètre de cercle de trous admissible. Plage de programmation : 0 à 99999,9999 Q279 Tolérance centre 1er axe? : écart de position admissible sur l'axe principal du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q280 Tolérance centre 2ème axe? : écart de position admissible sur l'axe auxiliaire du plan d'usinage. Plage de programmation : 0 à 99999,9999 Q281 Procès-verb. mes. (0/1/2)? :vous définissez ici si la commande doit, ou non, générer un procès-verbal de mesure : 0 : ne pas générer de procès-verbal de mesure 1 : générer un procès-verbal de mesure : la commande mémorise le fichier de procès-verbal TCHPR430.TXT dans le même répertoire que le programme CN 2 : interrompre l'exécution du programme et émettre le procès-verbal sur l'écran de la commande. Poursuivre le programme CN avec Start CN Q281=1 ;PROCES-VERBAL MESURE Q309=0 ;ARRET PGM SI ERREUR Q330=0 ;OUTIL Q309 Arrêt PGM si tolérance dépassée? : vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme et émettre un message d'erreur en cas de dépassement de la tolérance : 0 : ne pas interrompre le programme, ni émettre de message d'erreur 1 : interrompre l'exécution de programme et émettre un message d'erreur Q330 Outil pour surveillance? : vous définissez ici si la commande doit ou non procéder à une surveillance de l'outil (voir "Surveillance de l'outil", Page 512). Plage de programmation : 0 à 32767,9 ou le nom d'outil avec 16 caractères maximum 0 : surveillance inactive >0 : numéro ou nom de l'outil avec lequel la commande a exécuté l'usinage. Vous pouvez utiliser les softkeys pour reprendre directement un outil figurant dans le tableau d'outils. 548 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : contrôle automatique des pièces | MESURE PLAN (cycle 431, DIN/ISO : G431, option 17) 17.13 MESURE PLAN (cycle 431, DIN/ISO : G431, option 17) Mode opératoire du cycle Le cycle de palpage 431 détermine la pente d'un plan en palpant trois points et mémorise les valeurs dans les paramètres Q. 1 La commande amène le palpeur au point de palpage 1 programmé, en avance rapide (valeur de la colonne FMAX), selon la logique de positionnement définie(voir "Exécuter les cycles palpeurs", Page 389). Là, le palpeur mesure le premier point du plan. La commande décale alors le palpeur de la valeur de distance d'approche dans le sens opposé au sens de palpage 2 Le palpeur est ensuite ramené à la hauteur de sécurité, puis positionné au point de palpage 2 du plan d'usinage, où il mesure la valeur effective du deuxième point du plan. 3 Puis le palpeur est de nouveau retiré à la hauteur de sécurité, après quoi il est rétracté à la hauteur de sécurité, puis positionné dans le plan d'usinage au point de palpage 3 où il mesure la valeur effective du troisième point du plan. 4 Pour terminer, la commande rétracte le palpeur à la hauteur de sécurité et mémorise les valeurs angulaires déterminées aux paramètres Q suivants : Numéros de paramètres Signification Q158 Angle de projection de l'axe A Q159 Angle de projection de l'axe B Q170 Angle dans l'espace A Q171 Angle dans l'espace B Q172 Angle dans l'espace C Q173 à Q175 Valeurs de mesure dans l'axe du palpeur (première à troisième mesure) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 549 17 17 Cycles palpeurs : contrôle automatique des pièces | MESURE PLAN (cycle 431, DIN/ISO : G431, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous mémorisez vos angles dans le tableau de points d'origine et si vous effectuez ensuite une inclinaison aux angles spatiaux SPA=0, SPB=0, SPC=0 avec PLANE SPATIAL, vous obtenez plusieurs solutions pour lesquelles les axes inclinés se trouvent à 0. Programmez SYM (SEQ) + ou SYM (SEQ) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Pour que la commande puisse calculer les valeurs angulaires, les trois points de mesure ne doivent pas se trouver sur une ligne droite. Aux paramètres Q170 - Q172 sont enregistrés les angles dans l'espace qui sont utiles à la fonction Inclin. plan d'usinage. Les deux premiers points de mesure servent à définir la direction de l'axe principal pour l'inclinaison du plan d'usinage. Le troisième point de mesure définit le sens de l'axe d'outil. Définir le troisième point de mesure dans le sens positif de l’axe Y pour que l'axe d'outil soit situé correctement dans le système de coordonnées qui tourne dans le sens horaire. Paramètres du cycle Q263 1er point mesure sur 1er axe? (en absolu) : coordonnée du premier point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q264 1er point mesure sur 2ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q294 1er point mesure sur 3ème axe? (en absolu) : coordonnée du premier point de palpage dans l'axe de palpage. Plage de programmation : -99999,9999 à 99999,9999 Q265 2ème point mesure sur 1er axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe principal du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 Q266 2ème point mesure sur 2ème axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe auxiliaire du plan d'usinage Plage de programmation : -99999,9999 à 99999,9999 550 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : contrôle automatique des pièces | MESURE PLAN (cycle 431, DIN/ISO : G431, option 17) Q295 2ème point mesure sur 3ème axe? (en absolu) : coordonnée du deuxième point de palpage dans l'axe de palpage. Plage de programmation : -99999,9999 à 99999,9999 Q296 3ème point mesure sur 1er axe? (en absolu) : coordonnée du troisième point de palpage de l'axe principal du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q297 3ème point mesure sur 2ème axe? (en absolu) : coordonnée du troisième point de palpage de l'axe auxiliaire du plan d'usinage. Plage de programmation : -99999,9999 à 99999,9999 Q298 3ème point mesure sur 3ème axe? (en absolu) : coordonnée du troisième point de palpage dans l'axe de palpage. Plage de programmation : -99999,9999 à 99999,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q260 Hauteur de securite? (en absolu) : coordonnée dans l'axe du palpeur excluant toute collision entre le palpeur et la pièce (moyen de serrage). Plage de programmation : -99999,9999 à 99999,9999 Q281 Procès-verb. mes. (0/1/2)? :vous définissez ici si la commande doit, ou non, générer un procès-verbal de mesure : 0 : ne pas générer de procès-verbal de mesure 1 : générer un procès-verbal de mesure : la commande mémorise le fichier de procès-verbal TCHPR431.TXT dans le même répertoire que le programme CN 2 : interrompre l'exécution du programme et émettre le procès-verbal sur l'écran de la commande. Poursuivre le programme CN avec Start CN HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 431 MESURE PLAN Q263=+20 ;1ER POINT 1ER AXE Q264=+20 ;1ER POINT 2EME AXE Q294=-10 ;1ER POINT 3EME AXE Q265=+50 ;2EME POINT 1ER AXE Q266=+80 ;2EME POINT 2EME AXE Q295=+0 ;2EME POINT 3EME AXE Q296=+90 ;3EME POINT 1ER AXE Q297=+35 ;3EME POINT 2EME AXE Q298=+12 ;3EME POINT 3EME AXE Q320=0 ;DISTANCE D'APPROCHE Q260=+5 ;HAUTEUR DE SECURITE Q281=1 ;PROCES-VERBAL MESURE 551 17 17 Cycles palpeurs : contrôle automatique des pièces | Exemples de programmation 17.14 Exemples de programmation Exemple : mesure d'un tenon rectangulaire et reprise d'usinage Déroulement du programme Ebauche du tenon rectangulaire avec surépaisseur 0,5 Mesure du tenon rectangulaire Finition du tenon rectangulaire en tenant compte des valeurs de mesure 0 BEGIN PGM BEAMS MM 1 TOOL CALL 69 Z Appel de l'outil pour le pré-usinage 2 L Z+100 R0 FMAX Dégager l'outil 3 FN 0: Q1 = +81 Longueur du rectangle en X (cote d'ébauche) 4 FN 0: Q2 = +61 Longueur du rectangle en Y (cote d'ébauche) 5 CALL LBL 1 Appeler le sous-programme pour l'usinage 6 L Z+100 R0 FMAX Dégagement de l'outil 7 TOOL CALL 99 Z Appeler le palpeur 8 TCH PROBE 424 MESURE EXT. RECTANG. Mesurer le rectangle usiné Q273=+50 ;CENTRE 1ER AXE Q274=+50 ;CENTRE 2EME AXE Q282=80 ;1ER COTE Longueur nominale en X (cote définitive) Q283=60 ;2EME COTE Longueur nominale en Y (cote définitive) Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+30 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q284=0 ;COTE MAX. 1ER COTE Q285=0 ;COTE MIN. 1ER COTE Q286=0 ;COTE MAX. 2EME COTE Q287=0 ;COTE MIN. 2EME COTE Q279=0 ;TOLERANCE 1ER CENTRE Q280=0 ;TOLERANCE 2ND CENTRE Q281=0 ;PROCES-VERBAL MESURE Ne pas éditer de procès-verbal de mesure Q309=0 ;ARRET PGM SI ERREUR Ne pas délivrer de message d'erreur Q330=0 ;OUTIL Pas de surveillance d'outil Valeurs d'introduction inutiles pour contrôle de tolérance 9 FN 2: Q1 = +Q1 - +Q164 Calcul longueur en X à partir de l'écart mesuré 10 FN 2: Q2 = +Q2 - +Q165 Calcul longueur en Y à partir de l'écart mesuré 552 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 17 Cycles palpeurs : contrôle automatique des pièces | Exemples de programmation 11 L Z+100 R0 FMAX Dégagement du palpeur 12 TOOL CALL 1 Z S5000 Appel de l'outil de finition 13 CALL LBL 1 Appeler le sous-programme pour l'usinage 14 L Z+100 R0 FMAX M2 Dégager l'outil, fin de programme 15 LBL 1 Sous-programme contenant le cycle d’usinage du tenon rectangulaire 16 CYCL DEF 213 FINITION TENON Q200=20 ;DISTANCE D'APPROCHE Q201=-10 ;PROFONDEUR Q206=150 ;AVANCE PLONGEE PROF. Q202=5 ;PROFONDEUR DE PASSE Q207=500 ;AVANCE FRAISAGE Q203=+10 ;COORD. SURFACE PIECE Q204=20 ;SAUT DE BRIDE Q216=+50 ;CENTRE 1ER AXE Q217=+50 ;CENTRE 2EME AXE Q218=100 ;1ER COTE Longueur en X variable pour ébauche et finition Q219=Q2 ;2EME COTE Longueur en Y variable pour ébauche et finition Q220=0 ;RAYON D'ANGLE Q221=0 ;SUREPAISSEUR 1ER AXE 17 CYCL CALL M3 Appel du cycle 18 LBL 0 Fin du sous-programme 19 END PGM BEAMS MM HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 553 17 Cycles palpeurs : contrôle automatique des pièces | Exemples de programmation Exemple : mesure d'une poche rectangulaire, procèsverbal de mesure 0 BEGIN PGM BSMESS MM 1 TOOL CALL 1 Z Appel du palpeur 2 L Z+100 R0 FMAX Dégager le palpeur 3 TCH PROBE 423 MESURE INT. RECTANG. Q273=+50 ;CENTRE 1ER AXE Q274=+40 ;CENTRE 2EME AXE Q282=90 ;1ER COTE Longueur nominale en X Q283=70 ;2EME COTE Longueur nominale en Y Q261=-5 ;HAUTEUR DE MESURE Q320=0 ;DISTANCE D'APPROCHE Q260=+20 ;HAUTEUR DE SECURITE Q301=0 ;DEPLAC. HAUT. SECU. Q284=90.15 ;COTE MAX. 1ER COTE Cote max. en X Q285=89.95 ;COTE MIN. 1ER COTE Cote min. en X Q286=70.1 ;COTE MAX. 2EME COTE Cote max. en Y Q287=69.9 ;COTE MIN. 2EME COTE Cote min. en Y Q279=0.15 ;TOLERANCE 1ER CENTRE Ecart de position autorisé en X Q280=0.1 ;TOLERANCE 2ND CENTRE Ecart de position autorisé en Y Q281=1 ;PROCES-VERBAL MESURE Délivrer le procès-verbal de mesure Q309=0 ;ARRET PGM SI ERREUR Ne pas afficher de message d'erreur si tolérance dépassée Q330=0 ;OUTIL Pas de surveillance d'outil 4 L Z+100 R0 FMAX M2 Dégager l'outil, fin de programme 5 END PGM BSMESS MM 554 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 18 Cycles palpeurs : fonctions spéciales 18 Cycles palpeurs : fonctions spéciales | Principes de base 18.1 Principes de base Résumé REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées La commande doit avoir été préparée par le constructeur de la machine pour l'utilisation des palpeurs 3D. HEIDENHAIN ne garantit le fonctionnement correct des cycles de palpage qu'avec les palpeurs HEIDENHAIN. La commande propose des cycles pour les applications spéciales suivantes : Softkey 556 Cycle Page 3 MESURE Cycle de mesure pour la création de cycles OEM 557 4 MESURE 3D Mesure d'une position de votre choix 559 441 PALPAGE RAPIDE Cycle de mesure permettant de définir différents paramètres de palpage 562 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 18 Cycles palpeurs : fonctions spéciales | MESURE (cycle 3, option 17) 18.2 MESURE (cycle 3, option 17) Mode opératoire du cycle Le cycle palpeur 3 détermine une position au choix sur la pièce, quel que soit le sens de palpage. Contrairement aux autres cycles de mesure, le cycle 3 permet d'introduire directement la course de mesure DIST ainsi que l'avance de mesure F. Le retrait qui a lieu après avoir acquis la valeur de mesure s'effectue lui aussi selon la valeur MB programmable. 1 Le palpeur part de sa position actuelle dans le sens de palpage défini, avec l'avance programmée. Le sens de palpage doit être défini dans le cycle par le biais d'angles polaires. 2 Le palpeur s'arrête dès que la commande a acquis la position. La commande mémorise les coordonnées X, Y, Z du centre de la bille de palpage dans trois paramètres Q qui se suivent. La commande n'applique ni correction linéaire ni correction de rayon. Vous définissez le numéro du premier paramètre de résultat dans le cycle. 3 Pour terminer, la commande rétracte le palpeur dans le sens opposé au sens de palpage, en tenant compte de la valeur que vous avez définie au paramètre MB. Attention lors de la programmation ! Le mode d'action précis du cycle palpeur 3 est défini par le constructeur de votre machine ou le fabricant de logiciel qui utilise le cycle 3 pour des cycles palpeurs qui lui sont spécifiques. Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . Les données de palpage qui interviennent pour d'autres cycles palpeurs, la course max. jusqu'au point de palpage DIST et l'avance de palpage F n'ont pas d'effet dans le cycle palpeur 3. Notez qu'en principe la commande décrit toujours 4 paramètres successifs. Si la commande n'a pas pu déterminer un point de palpage valable, le programme CN continuera d'être exécuté sans message d'erreur. Dans ce cas, la CN affecte la valeur au 4ème paramètre de résultat pour que vous puissiez procéder vous-même à une résolution de l'erreur. La commande dégage le palpeur au maximum de la course de retrait MB, sans toutefois aller au-delà du point initial de la mesure. Ainsi, aucune collision ne peut donc se produire lors du retrait. Avec la fonction FN17: SYSWRITE ID 990 NR 6, vous pouvez définir si le cycle doit agir sur l'entrée palpeur X12 ou X13. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 557 18 Cycles palpeurs : fonctions spéciales | MESURE (cycle 3, option 17) Paramètres du cycle No. paramètre pour résultat? : entrer le numéro du paramètre Q auquel la commande doit affecter la valeur de la première coordonnée déterminée (X). Les valeurs Y et Z sont mémorisées dans les paramètres Q qui suivent. Plage de programmation : 0 à 1999 Axe de palpage? : indiquer l'axe dans le sens duquel le palpage doit avoir lieu et valider avec la touche ENT. Plage de programmation :X, Y ou Z Exemple 4 TCH PROBE 3.0 MESURE 5 TCH PROBE 3.1 Q1 6 TCH PROBE 3.2 X ANGLE: +15 7 TCH PROBE 3.3 ABST +10 F100 MB1 SYSTEME DE REF.: 0 8 TCH PROBE 3.4 ERRORMODE1 Angle de palpage? : entrer l'angle de déplacement du palpeur par rapport à l'axe de palpage défini et valider avec la touche ENT. Plage de programmation : -180,0000 à 180,0000 Course de mesure max.? : définir la course que doit parcourir le palpeur à partir du point de départ et valider avec la touche ENT. Plage de programmation : -99999,9999 à 99999,9999 Avance de mesure : entrer l'avance de mesure en mm/min. Plage de programmation : 0 à 3000,000 Course de retrait max.? : course de déplacement dans le sens opposé au sens de palpage, après déviation de la tige de palpage. La commande rétracte le palpeur au maximum jusqu'au point de départ, de manière à éviter tout risque de collision. Plage de programmation : 0 à 99999,9999 Système de réf.? (0=EFF/1=REF) : vous définissez ici si le sens de palpage et le résultat de la mesure doivent se référer au système de coordonnées actuel (EFF - pouvant aussi être décalé ou retourné) ou au système de coordonnées machine (REF) : 0 : palper dans le système actuel et enregistrer le résultat de la mesure dans le système EFF 1 : palper dans le système REF de la machine. Enregistrer le résultat de la mesure dans le système REF Mode erreur? (0=OFF/1=ON) : vous définissez ici si la commande doit, ou non, émettre un message d'erreur à la déviation de la tige de palpage en début de cycle. Si le mode 1 est sélectionné, la CN mémorise la valeur -1 au 4ème paramètre de résultat et continue d'exécuter le cycle : 0: émettre un message d'erreur 1: ne pas émettre de message d'erreur 558 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 18 Cycles palpeurs : fonctions spéciales | MESURE 3D (cycle 4, option #17) 18.3 MESURE 3D (cycle 4, option #17) Mode opératoire du cycle Le cycle 4 est un cycle auxiliaire que vous pouvez utiliser pour les mouvements de palpage avec le palpeur de votre choix (TS, TT ou TL). La commande ne dispose d'aucun cycle permettant d'étalonner le palpeur TS dans le sens de palpage de votre choix. Le cycle palpeur 4 détermine la position de votre choix sur la pièce, dans un sens de palpage qu'il est possible de définir par vecteur. Contrairement aux autres cycles de mesure, vous avez la possibilité de programmer directement la course de palpage et l'avance de palpage au cycle 4. Le retrait qui fait suite à l'acquisition de la valeur de palpage s'effectue lui aussi selon une valeur programmable. 1 La commande déplace le palpeur de sa position actuelle dans le sens de palpage défini, avec l'avance programmée. Le sens de palpage est à définir dans le cycle au moyen d’un vecteur (valeurs Delta en X, Y et Z). 2 Une fois la position acquise, la commande arrête le mouvement de palpage. Elle enregistre les coordonnées X, Y et Z de la position de palpage dans trois paramètres Q successifs. Vous définissez le numéro du premier paramètre dans le cycle. Si vous utilisez un palpeur TS, le résultat du palpage est corrigé de la valeur de désaxage étalonnée. 3 Enfin, la commande exécute un positionnement dans le sens inverse du sens de palpage. La course de déplacement est à définir au paramètre MB. La course ne peut aller au-delà de la position de départ. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 559 18 Cycles palpeurs : fonctions spéciales | MESURE 3D (cycle 4, option #17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si la commande n'a pas pu calculer de point de palpage valide, la valeur -1 est attribuée au 4ème paramètre de résultat. La commande n'interrompt pas le programme ! Assurez-vous que tous les points de palpage ont pu être atteints. Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . La commande dégage le palpeur au maximum de la course de retrait MB, sans toutefois aller au-delà du point initial de la mesure. Ainsi, aucune collision ne peut donc se produire lors du retrait. Lors du prépositionnement, veiller à ce que la commande déplace le centre de la bille de palpage non corrigé à la position définie ! Notez qu'en principe la commande décrit toujours 4 paramètres successifs. 560 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 18 Cycles palpeurs : fonctions spéciales | MESURE 3D (cycle 4, option #17) Paramètres du cycle No. paramètre pour résultat? : entrer le numéro du paramètre Q auquel la commande doit affecter la valeur de la première coordonnée déterminée (X). Les valeurs Y et Z sont mémorisées dans les paramètres Q qui suivent. Plage de programmation : 0 à 1999 Course de mesure relative en X? : composante X du vecteur de sens de déplacement du palpeur. Plage de programmation : -99999,9999 à 99999,9999 Course de mesure relative en Y? : composante Y du vecteur de sens de déplacement du palpeur. Plage de programmation : -99999,9999 à 99999,9999 Course de mesure relative en Z? : composante Z du vecteur de sens de déplacement du palpeur. Plage de programmation : -99999,9999 à 99999,9999 Course de mesure max.? : indiquer la course que doit parcourir le palpeur à partir du point de départ, en suivant le vecteur directionnel. Plage de programmation : -99999,9999 à 99999,9999 Avance de mesure : entrer l'avance de mesure en mm/min. Plage de programmation : 0 à 3000,000 Course de retrait max.? : course de déplacement dans le sens opposé au sens de palpage, après déviation de la tige de palpage. Plage de programmation : 0 à 99999,9999 Système de réf.? (0=EFF/1=REF) : vous définissez ici si le résultat du palpage enregistré se réfère au système de coordonnées indiqué (EFF) ou au système de coordonnées de la machine (REF) : 0 : enregistrer le résultat de la mesure dans le système EFF 1 : enregistrer le résultat de mesure dans le système REF HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 4 TCH PROBE 4.0 MESURE 3D 5 TCH PROBE 4.1 Q1 6 TCH PROBE 4.2 IX-0.5 IY-1 IZ-1 7 TCH PROBE 4.3 ABST+45 F100 MB50 SYSTEME DE REF.:0 561 18 Cycles palpeurs : fonctions spéciales | PALPAGE RAPIDE (cycle 441, DIN/ISO : G441, option 17) 18.4 PALPAGE RAPIDE (cycle 441, DIN/ISO : G441, option 17) Déroulement du cycle Le cycle palpeur 441 permet de configurer divers paramètres du palpeur (par ex. l'avance de positionnement) et ce, de manière globale pour tous les cycles palpeurs utilisés par la suite. Attention lors de la programmation ! Le constructeur de votre machine peut en outre limiter l'avance. L'avance maximale absolue est définie au paramètre machine maxTouchFeed (n° 122602). Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Le cycle 441 définit les paramètres des cycles de palpage. Ce cycle ne fait exécuter aucun mouvement à la machine. END PGM, M2, M30 réinitialisent les paramètres globaux du cycle 441. Le paramètre de cycle Q399 dépend de la configuration de votre machine. L’option consistant à orienter le palpeur depuis le programme CN doit être configurée par le constructeur de votre machine. Même si votre machine est dotée de potentiomètres distincts pour l'avance de travail et l'avance rapide, vous pouvez asservir l'avance de travail uniquement avec le potentiomètre des mouvements d'avance quand Q397=1. 562 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 18 Cycles palpeurs : fonctions spéciales | PALPAGE RAPIDE (cycle 441, DIN/ISO : G441, option 17) Paramètres du cycle Q396 Avance de positionnement? : vous définissez ici l’avance que la commande applique pour les mouvements de positionnement du palpeur. Plage de programmation : 0 à 99999,9999, sinon FMAX, FAUTO Q397 Prépos. avec avance rapide machine? : vous définissez ici si la commande doit, ou non, pré-positionner le palpeur avec l'avance FMAX (avance rapide de la machine) : 0 : prépositionner avec l'avance de Q396 1 : prépositionner avec l'avance rapide de la machine FMAXMême si votre machine est dotée de potentiomètres distincts pour l'avance de travail et l'avance rapide, vous pouvez asservir l'avance de travail uniquement avec le potentiomètre des mouvements d'avance quand Q397=1. Le constructeur de votre machine peut en outre limiter l'avance. L'avance maximale absolue est définie au paramètre machine maxTouchFeed (n° 122602). Q399 Poursuite angle (0/1)? : vous définissez ici si la commande doit, ou non, orienter le palpeur avant chaque procédure de palpage : 0 : ne pas orienter 1 : orienter la broche avant chaque opération de palpage (améliore la précision) Q400 interruption automatique? Vous définissez ici si la commande doit, ou non, interrompre l'exécution du programme après un cycle de mesure pour l’étalonnage automatique de la pièce et afficher les résultats de mesure à l’écran : 0 : ne pas interrompre l’exécution du programme, même si l’affichage des résultats de mesure à l’écran est sélectionné dans le cycle de palpage concerné 1 : interrompre l'exécution du programme et afficher les résultats de mesure à l’écran. Vous pouvez ensuite poursuivre l’exécution du programme avec Start CN. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 441 PALPAGE RAPIDE Q 396=3000;AVANCE DE POSITIONNEMENT Q 397=0 ;SÉLECTION AVANCE Q 399=1 ;POURSUITE ANGLE Q 400=1 ;INTERRUPTION 563 18 Cycles palpeurs : fonctions spéciales | Etalonner un palpeur à commutation 18.5 Etalonner un palpeur à commutation Pour déterminer exactement le point de commutation réel d'un palpeur 3D, il vous faut étalonner le palpeur. Dans le cas contraire, la commande n'est pas en mesure de fournir des résultats de mesure précis. Vous devez toujours étalonner le palpeur lors : de la mise en service Rupture de la tige de palpage Changement de la tige de palpage d'une modification de l'avance de palpage Irrégularités, par ex. dues à un échauffement de la machine d'une modification de l'axe d'outil actif La commande mémorise les valeurs d'étalonnage pour le palpeur actif, directement à la fin de l'opération d'étalonnage. Les données d'outils actualisées sont alors immédiatement actives et un nouvel appel d'outil n'est pas nécessaire. Lors de l'étalonnage, la commande calcule la longueur "effective" de la tige de palpage ainsi que le rayon "effectif" de la bille de palpage. Pour étalonner le palpeur 3D, fixez sur la table de la machine une bague de réglage ou un tenon d'épaisseur connue et de rayon connu. La commande dispose de cycles pour l'étalonnage de la longueur et du rayon : Procédez de la manière suivante: Appuyer sur la touche TOUCH PROBE Appuyer sur la softkey ETALONNER TS Sélectionner le cycle d'étalonnage Cycles d'étalonnage de la commande Softkey 564 Fonction Page Etalonner la longueur. 566 Déterminer le rayon et l'excentrement avec une bague étalon. 568 Déterminer un rayon et un excentrement avec un tenon ou un mandrin de calibrage 571 Déterminer le rayon et l'excentrement avec une bille étalon. 574 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 18 Cycles palpeurs : fonctions spéciales | Afficher les valeurs d'étalonnage 18.6 Afficher les valeurs d'étalonnage La commande mémorise la longueur effective et le rayon effectif du palpeur dans le tableau d'outils. La commande mémorise l'excentrement du palpeur dans le tableau des palpeurs, dans les colonnes CAL_OF1 (axe principal) et CAL_OF2 (axe secondaire). Pour afficher les valeurs mémorisées, appuyez sur la softkey du tableau palpeurs. Un procès-verbal de mesure est automatiquement créé pendant une opération d'étalonnage. Ce procès-verbal porte le nom TCHPRAUTO.html. Le lieu de sauvegarde de ce fichier est le même que celui du fichier de départ. Le procès-verbal de mesure peut être affiché sur la commande à l'aide du navigateur. Si plusieurs cycles d'étalonnage du palpeur ont été utilisés dans le programme CN, tous les procès-verbaux de mesure sont enregistrés dans TCHPRAUTO.html. Si vous utilisez un cycle de palpage en mode Manuel, la commande enregistre le procèsverbal de mesure sous le nom TCHPRMAN.html. Ce fichier est sauvegardé dans le répertoire TNC: \ *. Assurez-vous que le numéro d’outil du tableau d'outils et le numéro de palpeur du tableau de palpeurs coïncident. Ceci est valable indépendamment du fait que le cycle palpeur soit exécuté en mode Automatique ou en Mode Manuel. Vous trouverez des informations complémentaires au chapitre Tableau de palpeurs HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 565 18 Cycles palpeurs : fonctions spéciales | ETALONNAGE LONGUEUR TS (cycle 461, DIN/ISO : G461, option #17) 18.7 ETALONNAGE LONGUEUR TS (cycle 461, DIN/ISO : G461, option #17) Mode opératoire du cycle Avant de lancer le cycle d'étalonnage, vous devez initialiser le point de référence dans l'axe de broche de sorte que Z=0 sur la table de la machine et pré-positionner le palpeur au-dessus de la bague étalon. Un procès-verbal de mesure est automatiquement créé pendant une opération d'étalonnage. Ce procès-verbal porte le nom TCHPRAUTO.html. Le lieu de sauvegarde de ce fichier est le même que celui du fichier de départ. Le procès-verbal de mesure peut être affiché sur la commande à l'aide du navigateur. Si plusieurs cycles d'étalonnage du palpeur ont été utilisés dans le programme CN, tous les procès-verbaux de mesure sont enregistrés dans TCHPRAUTO.html. 1 La commande oriente le palpeur selon l'angle CAL_ANG du tableau des palpeurs (uniquement si votre palpeur peut être orienté). 2 La commande procède au palpage dans le sens négatif de l'axe de broche, en partant de la position actuelle, avec l'avance de palpage (colonne F du tableau de palpeurs). 3 La commande ramène ensuite le palpeur à la position de départ en avance rapide (colonne FMAX du tableau de palpeurs). 566 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : fonctions spéciales | ETALONNAGE LONGUEUR TS (cycle 461, DIN/ISO : G461, option #17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées HEIDENHAIN ne garantit le fonctionnement correct des cycles de palpage qu'avec les palpeurs HEIDENHAIN. Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . La longueur effective du palpeur se réfère toujours au point d'origine de l'outil. Le point d'origine de l’outil se trouve souvent sur le nez de la broche (surface plane). Le constructeur de votre machine peut également placer le point d’origine de l’outil à un autre endroit. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Un procès-verbal de mesure est automatiquement créé pendant une opération d'étalonnage. Ce procès-verbal porte le nom TCHPRAUTO.html. Q434 Point de réf. pour longueur? (en absolu) : référence pour la longueur (par ex. hauteur de la bague étalon). Plage de programmation : -99999,9999 à 99999,9999 Exemple 5 TCH PROBE 461 ETALONNAGE LONGUEUR TS Q434=+5 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 ;POINT ORIGINE 567 18 18 Cycles palpeurs : fonctions spéciales | ETALONNAGE RAYON INTERIEURE TS (cycle 462, DIN/ISO : G462, option 17) 18.8 ETALONNAGE RAYON INTERIEURE TS (cycle 462, DIN/ISO : G462, option 17) Mode opératoire du cycle Consultez le manuel de votre machine ! Avant de lancer le cycle d'étalonnage, le palpeur doit être prépositionné au centre de la bague étalon et à la hauteur de mesure souhaitée. La commande exécute une routine de palpage automatique lors de l'étalonnage du rayon de la bille. Lors de la première opération, la commande détermine le centre de la bague étalon ou du tenon (mesure grossière) et y positionne le palpeur. Le rayon de la bille est ensuite déterminé lors de l'opération d'étalonnage proprement dit (mesure fine). Si le palpeur permet d'effectuer une mesure avec rotation à 180°, l'excentrement est alors déterminé pendant une opération ultérieure. Un procès-verbal de mesure est automatiquement créé pendant une opération d'étalonnage. Ce procès-verbal porte le nom TCHPRAUTO.html. Le lieu de sauvegarde de ce fichier est le même que celui du fichier de départ. Le procès-verbal de mesure peut être affiché sur la commande à l'aide du navigateur. Si plusieurs cycles d'étalonnage du palpeur ont été utilisés dans le programme CN, tous les procès-verbaux de mesure sont enregistrés dans TCHPRAUTO.html. L'orientation du palpeur détermine la routine d'étalonnage : Pas d'orientation possible ou orientation possible dans un seul sens : la commande effectue une mesure grossière et une mesure fine et détermine le rayon actif de la bille de palpage (colonne R dans tool.t). Orientation possible dans deux directions (par ex. palpeurs HEIDENHAIN à câble) : la commande effectue une mesure grossière et une mesure fine, tourne le palpeur de 180° et exécute quatre autres routines de palpage. En plus du rayon, la mesure avec rotation de 180° permet de déterminer l'excentrement (CAL_OF dans tchprobe.tp). Toutes les orientations possibles (par ex. palpeurs infrarouges HEIDENHAIN) : routine de palpage : voir "Possibilité d'orientation dans deux directions" 568 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : fonctions spéciales | ETALONNAGE RAYON INTERIEURE TS (cycle 462, DIN/ISO : G462, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées La commande doit avoir été préparée par le constructeur de la machine pour pouvoir déterminer l'excentrement de la bille de palpage. Consultez le manuel de la machine ! Les caractéristiques d'orientation des palpeurs HEIDENHAIN sont prédéfinies. D'autres palpeurs peuvent être configurés par le constructeur de la machine. HEIDENHAIN ne garantit le fonctionnement correct des cycles de palpage qu'avec les palpeurs HEIDENHAIN. Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Vous ne pouvez déterminer l'excentrement qu'avec le palpeur approprié. Un procès-verbal de mesure est automatiquement créé pendant une opération d'étalonnage. Ce procès-verbal porte le nom TCHPRAUTO.html. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 569 18 18 Cycles palpeurs : fonctions spéciales | ETALONNAGE RAYON INTERIEURE TS (cycle 462, DIN/ISO : G462, option 17) Q407 RAYON BAGUE Vous entrez le rayon de la bague étalon. Plage de programmation : 0 à 9,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q423 Nombre de palpages? (en absolu) : nombre de points de mesure sur le diamètre. Plage de programmation : 3 à 8 Q380 Angle réf. axe princip.? (en absolu) : angle entre l'axe principal du plan d'usinage et le premier point de palpage. Plage de programmation : 0 à 360,0000 570 Exemple 5 TCH PROBE 462 ETALONNAGE TS AVEC UNE BAGUE Q407=+5 ;RAYON BAGUE Q320=+0 ;DISTANCE D'APPROCHE Q423=+8 ;NOMBRE DE PALPAGES Q380=+0 ;ANGLE DE REFERENCE HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : fonctions spéciales | ETALONNAGE RAYON EXTERIEUR TS (cycle 463, DIN/ISO : G463, option 17) 18.9 ETALONNAGE RAYON EXTERIEUR TS (cycle 463, DIN/ISO : G463, option 17) Mode opératoire du cycle Avant de lancer le cycle d'étalonnage, vous devez pré-positionner le palpeur au centre, au-dessus du mandrin de calibrage. Positionnez le palpeur dans l'axe de palpage, au-dessus du mandrin de calibrage, à une distance environ égale à la distance d'approche (valeur du tableau des palpeurs + valeur du cycle). La commande exécute une routine de palpage automatique lors de l'étalonnage du rayon de la bille. Lors de la première opération, la commande détermine le centre de la bague étalon ou du tenon (mesure grossière) et y positionne le palpeur. Le rayon de la bille est ensuite déterminé lors de l'opération d'étalonnage proprement dit (mesure fine). Si le palpeur permet d'effectuer une mesure avec rotation à 180°, l'excentrement est alors déterminé pendant une opération ultérieure. Un procès-verbal de mesure est automatiquement créé pendant une opération d'étalonnage. Ce procès-verbal porte le nom TCHPRAUTO.html. Le lieu de sauvegarde de ce fichier est le même que celui du fichier de départ. Le procès-verbal de mesure peut être affiché sur la commande à l'aide du navigateur. Si plusieurs cycles d'étalonnage du palpeur ont été utilisés dans le programme CN, tous les procès-verbaux de mesure sont enregistrés dans TCHPRAUTO.html. L'orientation du palpeur détermine la routine d'étalonnage : Pas d'orientation possible ou orientation possible dans un seul sens : la commande effectue une mesure grossière et une mesure fine et détermine le rayon actif de la bille de palpage (colonne R dans tool.t). Orientation possible dans deux directions (par ex. palpeurs HEIDENHAIN à câble) : la commande effectue une mesure grossière et une mesure fine, tourne le palpeur de 180° et exécute quatre autres routines de palpage. En plus du rayon, la mesure avec rotation de 180° permet de déterminer l'excentrement (CAL_OF dans tchprobe.tp). Toutes les orientations possibles (par ex. palpeurs infrarouges HEIDENHAIN) : routine de palpage : voir "Possibilité d'orientation dans deux directions" HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 571 18 18 Cycles palpeurs : fonctions spéciales | ETALONNAGE RAYON EXTERIEUR TS (cycle 463, DIN/ISO : G463, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées La commande doit avoir été préparée par le constructeur de la machine pour pouvoir déterminer l'excentrement de la bille de palpage. Consultez le manuel de la machine ! Les caractéristiques d'orientation des palpeurs HEIDENHAIN sont déjà prédéfinies. D'autres palpeurs peuvent être configurés par le constructeur de la machine. HEIDENHAIN ne garantit le fonctionnement correct des cycles de palpage qu'avec les palpeurs HEIDENHAIN. Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe de palpage. Vous ne pouvez déterminer l'excentrement qu'avec le palpeur approprié. Un procès-verbal de mesure est automatiquement créé pendant une opération d'étalonnage. Ce procès-verbal porte le nom TCHPRAUTO.html. 572 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : fonctions spéciales | ETALONNAGE RAYON EXTERIEUR TS (cycle 463, DIN/ISO : G463, option 17) Q407 Rayon exact tenon calibr. ? : diamètre de la bague de réglage. Plage de programmation : 0 à 99,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q423 Nombre de palpages? (en absolu) : nombre de points de mesure sur le diamètre. Plage de programmation : 3 à 8 Q380 Angle réf. axe princip.? (en absolu) : angle entre l'axe principal du plan d'usinage et le premier point de palpage. Plage de programmation : 0 à 360,0000 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 463 ETALONNAGE TS AVEC UN TENON Q407=+5 ;RAYON TENON Q320=+0 ;DISTANCE D'APPROCHE Q301=+1 ;DEPLAC. HAUT. SECU. Q423=+8 ;NOMBRE DE PALPAGES Q380=+0 ;ANGLE DE REFERENCE 573 18 18 Cycles palpeurs : fonctions spéciales | ETLONNAGE TS (cycle 460, DIN/ISO : G460, option 17) 18.10 ETLONNAGE TS (cycle 460, DIN/ISO : G460, option 17) Avant de lancer le cycle d'étalonnage, vous devez pré-positionner le palpeur au centre, au-dessus de la bille étalon. Positionnez le palpeur dans l'axe de palpage, au-dessus de la bille étalon, à une distance environ égale à la distance d'approche (valeur du tableau des palpeurs + valeur du cycle). Le cycle 460 permet d'étalonner automatiquement un palpeur 3D à commutation avec une bille précise de calibration. Il est en outre possible d'acquérir des données d'étalonnage 3D. Vous aurez pour cela besoin de l'option logicielle 92 "3D-ToolComp". Les données d'étalonnage 3D décrivent le comportement du palpeur en cas de déviation, quel que soit le sens de palpage. Les données d'étalonnage 3D sont sauvegardées sous TNC: \system\3D-ToolComp\*. Dans le tableau d'outils, les informations contenues dans la colonne DR2TABLE font référence au tableau 3DTC. Lors de la procédure de palpage, les données d'étalonnage 3D sont alors prises en compte. Mode opératoire du cycle Selon ce qui a été défini au paramètre Q433, vous pouvez également effectuer un étalonnage du rayon ou un étalonnage du rayon et de la longueur. Etalonnage du rayon Q433=0 1 Fixer la bille étalon. S'assurer de l'absence de tout risque de collision ! 2 Le palpeur doit être positionné manuellement dans son axe, audessus de la bille étalon, dans le plan d'usinage, à peu près au centre de la bille. 3 Le premier mouvement de la commande est effectué dans le plan, en tenant compte de l'angle de référence (Q380). 4 La commande positionne ensuite le palpeur dans l'axe de palpage. 5 La procédure de palpage commence et la commande lance la recherche d'un équateur pour la bille étalon. 6 Une fois l'équateur déterminé, l'étalonnage de rayon commence. 7 Pour finir, la commande retire le palpeur le long de l'axe de palpage, à la hauteur de prépositionnement du palpeur. 574 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 18 Cycles palpeurs : fonctions spéciales | ETLONNAGE TS (cycle 460, DIN/ISO : G460, option 17) Etalonnage du rayon et de la longueur Q433=1 1 Fixer la bille étalon. S'assurer de l'absence de tout risque de collision ! 2 Le palpeur doit être positionné manuellement dans son axe, audessus de la bille étalon, dans le plan d'usinage, à peu près au centre de la bille. 3 Le premier mouvement de la commande est effectué dans le plan, en tenant compte de l'angle de référence (Q380). 4 La commande positionne ensuite le palpeur dans l'axe de palpage. 5 La procédure de palpage commence et la commande lance la recherche d'un équateur pour la bille étalon. 6 Une fois l'équateur déterminé, l'étalonnage de rayon commence. 7 La commande retire ensuite le palpeur le long de l'axe de palpage, à la hauteur de prépositionnement du palpeur. 8 La commande détermine la longueur du palpeur au pôle nord de la bille étalon. 9 A la fin du cycle, la commande retire le palpeur le long de l'axe de palpage, à la hauteur de prépositionnement du palpeur. Selon ce qui a été défini au paramètre Q455, vous pouvez également effectuer un étalonnage 3D. Etalonnage 3D Q455= 1...30 1 Fixer la bille étalon. S'assurer de l'absence de tout risque de collision ! 2 Une fois le rayon et la longueur mesurés, la commande retire le palpeur dans l'axe de palpage. La commande positionne ensuite le palpeur au-dessus du pôle nord. 3 La procédure de palpage commence du pôle nord jusqu'à l'équateur, en plusieurs petites étapes. Les écarts par rapport à la valeur nominale, et donc un comportement de déviation donné, sont ainsi déterminés. 4 Vous pouvez définir le nombre de points de palpage entre le pôle nord et l'équateur. Ce nombre dépend de la valeur définie au paramètre Q455. Vous pouvez paramétrer une valeur entre 1 et 30. Si vous programmez Q455=0, aucun étalonnage 3D n'aura lieu. 5 Les écarts qui auront été déterminés pendant l'étalonnage sont mémorisés dans un tableau 3DTC. 6 A la fin du cycle, la commande retire le palpeur le long de l'axe de palpage, à la hauteur de prépositionnement du palpeur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 575 18 Cycles palpeurs : fonctions spéciales | ETLONNAGE TS (cycle 460, DIN/ISO : G460, option 17) Attention lors de la programmation! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées HEIDENHAIN ne garantit le fonctionnement correct des cycles de palpage qu'avec les palpeurs HEIDENHAIN. Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . Un procès-verbal de mesure est automatiquement créé pendant une opération d'étalonnage. Ce procèsverbal porte le nom TCHPRAUTO.html. Le lieu de sauvegarde de ce fichier est le même que celui du fichier de départ. Le procès-verbal de mesure peut être affiché sur la commande à l'aide du navigateur. Si plusieurs cycles d'étalonnage du palpeur ont été utilisés dans le programme CN, tous les procès-verbaux de mesure sont enregistrés dans TCHPRAUTO.html. La longueur effective du palpeur se réfère toujours au point d'origine de l'outil. Le point d'origine de l’outil se trouve souvent sur le nez de la broche (surface plane). Le constructeur de votre machine peut également placer le point d’origine de l’outil à un autre endroit. Avant de définir le cycle, vous devez avoir programmé un appel d'outil pour définir l'axe du palpeur. Prépositionner le palpeur de manière à ce qu'il se trouve à peu près au-dessus du centre de la bille. Si vous programmez Q455=0, la commande n'effectue pas d'étalonnage 3D. Si vous programmez Q455=1 - 30, le palpeur effectue un étalonnage 3D. Des écarts par rapport au comportement du palpeur pendant une déviation sont alors déterminés par rapport à différents angles. Si vous programmez Q455=1 - 30, un tableau sera sauvegardé sous TNC:\system\3D-ToolComp\*. S'il existe déjà une référence à un tableau d'étalonnage (enregistrement dans DR2TABLE), ce tableau sera écrasé. S'il existe déjà une référence à un tableau d'étalonnage (enregistrement dans DR2TABLE), une référence dépendante du numéro de l'outil sera créée et un tableau sera généré en conséquence. 576 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 18 Cycles palpeurs : fonctions spéciales | ETLONNAGE TS (cycle 460, DIN/ISO : G460, option 17) Q407 Rayon bille calibr. exact? Indiquez le rayon exact de la bille étalon utilisée. Plage de programmation : 0,0001 à 99,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs) et uniquement lorsque le point d'origine est palpé dans l'axe de palpage. Plage de programmation : 0 à 99999,9999 Q301 Déplacement à haut. sécu. (0/1)? : vous définissez ici comment le palpeur doit se déplacer entre les points de mesure : 0 : déplacement à la hauteur de mesure entre les points de mesure 1 : déplacement à la hauteur de sécurité entre les points de mesure Q423 Nombre de palpages? (en absolu) : nombre de points de mesure sur le diamètre. Plage de programmation : 3 à 8 Q380 Angle réf. axe princip.? (en absolu) Entrez l'angle de référence (la rotation de base) pour l'acquisition des points de mesure dans le système de coordonnées de la pièce actif. La définition d'un angle de référence peut accroître considérablement la plage de mesure d'un axe. Plage de programmation : 0 à 360,0000 Q433 Etalonner longueur (0/1) ? : vous définissez ici si la commande doit, ou non, étalonner la longueur du palpeur après l'étalonnage du rayon : 0 : ne pas étalonner la longueur du palpeur 1 : étalonner la longueur du palpeur Q434 Point de réf. pour longueur? (en absolu) : coordonnée du centre de la bille étalon. La définition n'est indispensable que si l'étalonnage de longueur doit avoir lieu. Plage de programmation : -99999,9999 à 99999,9999 Q455 Nbre de pts p. l'étalonnage 3D? Indiquez le nombre de points de palpage pour l'étalonnage 3D. Il est par exemple judicieux de prévoir 15 points de palpage. La valeur 0 est définie de manière à ce qu'aucun étalonnage 3D n'ait lieu. Lors d'un étalonnage 3D, le comportement du palpeur lors d'une déviation est déterminé à l'aide de différents angles et mémorisé dans un tableau. Vous aurez besoin de la fonction 3D-ToolComp pour l'étalonnage 3D. Plage de programmation : 1 à 30 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple 5 TCH PROBE 460 ETALONNAGE TS AVEC UNE BILLE Q407=12.5 ;RAYON BILLE Q320=0 ;DISTANCE D'APPROCHE Q301=1 ;DEPLAC. HAUT. SECU. Q423=4 ;NOMBRE DE PALPAGES Q380=+0 ;ANGLE DE REFERENCE Q433=0 ;ETALONNAGE LONGUEUR Q434=-2.5 ;POINT ORIGINE Q455=15 ;NBRE POINTS ETAL. 3D 577 19 Cycles palpeurs : mesure automatique de la cinématique 19 Cycles palpeurs : mesure automatique de la cinématique | Etalonnage de la cinématique avec des palpeurs TS (option 48) 19.1 Etalonnage de la cinématique avec des palpeurs TS (option 48) Principes Les exigences en matière de précision ne cessent de croître, en particulier pour l'usinage 5 axes. Les pièces complexes doivent pouvoir être produites avec une précision reproductible, y compris sur de longues périodes. Lors d'un usinage à plusieurs axes, ce sont notamment les écarts entre le modèle de cinématique configuré sur la commande (voir figure 1 à droite) et la situation cinématique réelle sur la machine (voir figure 2 qui peuvent être à l'origine d'imprécisions. Pendant le positionnement des axes rotatifs, ces écarts entraînent un défaut sur la pièce (voir figure de droite 3). Un modèle doit être créé en étant le plus proche possible de la réalité. La nouvelle fonction de commande KinematicsOpt est un composant essentiel qui répond à ces exigences complexes : un cycle de palpage 3D étalonne de manière entièrement automatique les axes rotatifs présents sur la machine, que les axes rotatifs soient associés à un plateau circulaire ou à une tête pivotante. Une bille étalon est fixée à un emplacement quelconque de la table de la machine et mesurée avec la résolution définie. Lors de la définition du cycle, il suffit de définir, distinctement pour chaque axe rotatif, la plage que vous voulez mesurer. La commande s'appuie sur les valeurs mesurées pour déterminer la précision d'inclinaison statique. Le logiciel minimise les erreurs de positionnement résultant des mouvements d'inclinaison. A la fin de la mesure, il mémorise automatiquement la géométrie de la machine dans les constantes-machine du tableau de la cinématique. 580 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : mesure automatique de la cinématique | Etalonnage de la cinématique avec des palpeurs TS (option 48) Résumé La commande met des cycles à disposition pour sauvegarder, restaurer, contrôler et optimiser automatiquement la cinématique de la machine : Softkey Cycle Page 450 SAUVEG. CINEMATIQUE Sauvegarde et restauration automatiques de cinématiques 584 451 MESURE CINEMATIQUE Contrôle automatique ou optimisation de la cinématique de la machine 587 452 COMPENSATION PRESET Contrôle automatique ou optimisation de la cinématique de la machine 603 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 581 19 19 Cycles palpeurs : mesure automatique de la cinématique | Conditions requises 19.2 Conditions requises Consultez le manuel de votre machine ! La fonction Advanced Function Set 1 (option 8) doit être activée. L'option 17 doit être activée. L'option 48 doit être activée. La machine et la commande doivent avoir été préparées par le constructeur de la machine. Pour pouvoir utiliser KinematicsOpt, les conditions suivantes doivent être remplies : Le palpeur 3D utilisé pour l'opération doit être étalonné Les cycles ne peuvent être exécutés qu'avec l'axe d'outil Z Une bille étalon suffisamment rigide, et dont le rayon est connu avec exactitude, doit être fixée à l'endroit de votre choix sur la table de la machine. La description de la cinématique doit être complète et correctement définie. Quant aux cotes de transformation, elles doivent être renseignées avec une précision d'environ 1 mm. La machine doit être étalonnée géométriquement et intégralement (opération réalisée par le constructeur de la machine lors de sa mise en route) Pour CfgKinematicsOpt (n°204800), le constructeur de la machine doit avoir enregistré les paramètres machine dans les données de configuration: Le paramètre maxModification (n°204801) définit la limite de tolérance à partir de laquelle la commande doit émettre une information pour indiquer que les modifications apportées aux données de cinématique se trouvent au-dessus de la valeur limite. maxDevCalBall (n°204802) définit la taille que peut avoir le rayon de la bille étalon dans le paramètre de cycle programmé. mStrobeRotAxPos (n°204803) définit une fonction M mise au point par le constructeur de la machine qui permettra de positionner les axes rotatifs. HEIDENHAIN conseille d'utiliser des billes étalons KKH 250 (numéro ID 655475-01) ou KKH 100 (numéro ID 655475-02), qui présentent une rigidité particulièrement élevée et qui sont spécialement conçues pour l'étalonnage de machines Si vous êtes intéressés, merci de bien vouloir prendre contact avec HEIDENHAIN. 582 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 19 Cycles palpeurs : mesure automatique de la cinématique | Conditions requises Attention lors de la programmation! REMARQUE Attention, risque de collision ! Aucun cycle de conversion de coordonnées ne doit être actif lors de l'exécution des cycles palpeurs 400 à 499. Ne pas activer les cycles suivants avant d'avoir utiliser les cycles de palpage : cycle 7 POINT ZERO, cycle 8 IMAGE MIROIR, cycle 10 ROTATION, cycle 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE. Réinitialiser au préalable les conversions de coordonnées HEIDENHAIN ne garantit le fonctionnement correct des cycles de palpage qu'avec les palpeurs HEIDENHAIN. Si une fonction M est définie au paramètre machine optionnel mStrobeRotAxPos (n°204803), vous devrez positionner les axes rotatifs à 0 degré (système EFF) avant de démarrer un des cycles KinematicsOpt (sauf 450). Si les paramètres machine ont été modifiés par les cycles KinematicsOpt, la commande doit être redémarrée. Sinon, il peut y avoir, dans certaines conditions, un risque de perte des modifications. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 583 19 Cycles palpeurs : mesure automatique de la cinématique | SAUVEGARDE DE LA CINEMATIQUE (cycle 450, DIN/ISO : G450, option 48) 19.3 SAUVEGARDE DE LA CINEMATIQUE (cycle 450, DIN/ISO : G450, option 48) Mode opératoire du cycle Le cycle palpeur 450 permet de sauvegarder la cinématique courante de la machine ou de restaurer une cinématique préalablement sauvegardée. Les données mémorisées peuvent être affichées et effacées. Au total 16 emplacements de mémoire sont disponibles. Q410 = 0 Q410 = 1 Q410 = 2 x Q410 = 3 xxxx Attention lors de la programmation ! La sauvegarde et la restauration avec le cycle 450 ne doivent être exécutés que si aucune cinématique de porte-outil comportant des transformations n'est activée. Ce cycle ne peut être exécuté que dans les modes d'usinage FUNCTION MODE MILL et FUNCTION MODE TURN . Avant d'optimiser une cinématique, nous vous conseillons de sauvegarder systématiquement la cinématique active. Avantage : Si le résultat ne correspond pas à vos attentes, ou si des erreurs se produisent lors de l'optimisation (une coupure de courant, par exemple), vous pouvez alors restaurer les anciennes données. Remarques à propos du mode Créer : La commande ne peut en principe restaurer les données sauvegardées que dans une description de cinématique identique. Une modification de la cinématique entraîne aussi systématiquement une modification du point d'origine. Le cycle ne rétablit plus de valeurs égales. Il rétablit uniquement des données qui sont différentes des données existantes. De même, les corrections sont rétablies à condition d'avoir été sauvegardées au préalable. 584 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : mesure automatique de la cinématique | SAUVEGARDE DE LA CINEMATIQUE (cycle 450, DIN/ISO : G450, option 48) Paramètres du cycle Q410 Mode (0/1/2/3)? : vous définissez ici si vous souhaitez sauvegarder ou restaurer une cinématique : 0 : sauvegarder une cinématique active 1 : restaurer une cinématique sauvegardée 2 : afficher l'état de mémoire actuel 3 : supprimer une séquence de données Q409/QS409 Désignation du jeu de données? : numéro ou nom de l'identifiant de la séquence de données. Lors de la programmation, vous pouvez entrer des valeurs de 0 à 99999 et des lettres dont le nombre est limité à 16. Au total 16 emplacements mémoires sont disponibles. Le paramètre Q409 n'est affecté à aucune fonction si le mode 2 est sélectionné. Dans les modes 1 et 3 (création et suppression), vous pouvez utiliser des variables (caractères génériques) pour effectuer des recherches. Si en présence de caractères génériques la commande identifie plusieurs séquences de données possibles, alors elle restaure les valeurs moyennes des données (mode 1) ou supprime toutes les séquences de données sélectionnées après confirmation (mode 3). Pour effectuer des recherches, vous pouvez recourir aux caractères génériques suivants : ? : un seul caractère inconnu $ : un seul caractère alphabétique (une lettre) # : un seul chiffre inconnu * : une chaîne de caractères de la longueur de votre choix Sauvegarde de la cinématique courante 5 TCH PROBE 450 SAUVEG. CINEMATIQUE Q410=0 ;MODE Q409=947 ;DESIGNATION MEMOIRE Restauration des jeux de données 5 TCH PROBE 450 SAUVEG. CINEMATIQUE Q410=1 ;MODE Q409=948 ;DESIGNATION MEMOIRE Afficher tous les jeux de données mémorisés 5 TCH PROBE 450 SAUVEG. CINEMATIQUE Q410=2 ;MODE Q409=949 ;DESIGNATION MEMOIRE Effacer des jeux de données 5 TCH PROBE 450 SAUVEG. CINEMATIQUE Q410=3 ;MODE Q409=950 ;DESIGNATION MEMOIRE Fonction journal Après avoir exécuté le cycle 450, la commande génère un procèsverbal (tchprAUTO.html) qui contient les données suivantes : Date et heure de création du fichier journal Nom du programme CN depuis lequel le cycle est exécuté. Identificateur de la cinématique courante Outil actif Les autres données du protocole dépendent du mode sélectionné : Mode 0 : journalisation de toutes les données relatives aux axes et aux transformations de la chaîne cinématique qui ont été sauvegardées par la commande. Mode 1 : enregistrement dans un fichier journal de toutes les transformations antérieures et postérieures à la restauration Mode 2 : Liste des séquences de données mémorisées Mode 3 : Liste des séquences de données supprimées HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 585 19 19 Cycles palpeurs : mesure automatique de la cinématique | SAUVEGARDE DE LA CINEMATIQUE (cycle 450, DIN/ISO : G450, option 48) Remarques sur la sauvegarde des données La commande mémorise les données sauvegardées dans le fichier TNC:\table\DATA450.KD. Ce fichier peut par exemple être sauvegardé sur un PC externe, avec TNCremo. Si le fichier est effacé, les données sauvegardées sont également perdues. Une modification manuelle des données du fichier peut avoir comme conséquence de corrompre les jeux de données et de les rendre inutilisables. Si le fichier TNC:\table\DATA450.KD n'existe pas, il est créé automatiquement lors de l'exécution du cycle 450. Pensez à supprimer les fichiers intitulés TNC:\table \DATA450.KD qui seraient éventuellement vides avant de lancer le cycle 450. Si le tableau de mémoire vide disponible (TNC:\table\DATA450.KD) ne contient aucune ligne, le fait d'exécuter le cycle 450 génère un message d'erreur. Dans ce cas, supprimer le tableau de mémoire vide et exécuter à nouveau le cycle. Ne pas apporter de modifications manuelles à des données qui ont été sauvegardées. Sauvegardez le fichier TNC:\table\DATA450.KD pour pouvoir le restaurer en cas de besoin (par exemple si le support de données est défectueux). 586 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) 19.4 MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Mode opératoire du cycle Consultez le manuel de votre machine ! Le cycle palpeur 451 permet de contrôler et, au besoin, d'optimiser la cinématique de votre machine. Pour cela, vous mesurez, à l'aide d'un palpeur 3D de type TS, une bille étalon HEIDENHAIN que vous aurez fixée sur la table de machine. HEIDENHAIN conseille d'utiliser des billes étalons KKH 250 (numéro ID 655475-01) ou KKH 100 (numéro ID 655475-02), qui présentent une rigidité particulièrement élevée et qui sont spécialement conçues pour l'étalonnage de machines. Si vous êtes intéressés, merci de bien vouloir prendre contact avec HEIDENHAIN. B+ C+ A+ La commande détermine la précision statique d'inclinaison. Pour cela, le logiciel minimise les erreurs spatiales résultant des inclinaisons et mémorise automatiquement, en fin de procédure, la géométrie de la machine dans les constantes machine correspondantes de la description de la cinématique. 1 Fixez la bille étalon en faisant attention au risque de collision. 2 En Mode Manuel, définir le point d'origine au centre de la bille ou, si Q431=1 ou Q431=3 : positionner manuellement le palpeur sur l'axe de palpage au-dessus de la bille étalon et au centre de la bille dans le plan d'usinage. 3 Sélectionner le mode Exécution de programme et démarrer le programme d'étalonnage 4 La commande mesure automatiquement tous les axes rotatifs les uns après les autres, avec la résolution que vous avez définie 5 La commande mémorise les valeurs de mesure aux paramètres Q suivants : HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 587 19 19 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Numéros de paramètres Signification Q141 Ecart standard mesuré dans l'axe A (–1 si l'axe n'a pas été mesuré) Q142 Ecart standard mesuré dans l'axe B (–1 si l'axe n'a pas été mesuré) Q143 Ecart standard mesuré dans l'axe C (–1 si l'axe n'a pas été mesuré) Q144 Ecart standard optimisé dans l'axe A (–1 si l'axe n'a pas été optimisé) Q145 Ecart standard optimisé dans l'axe B (–1 si l'axe n'a pas été optimisé) Q146 Ecart standard optimisé dans l'axe C (–1 si l'axe n'a pas été optimisé) Q147 Erreur d'offset dans le sens X pour le transfert manuel au paramètre machine correspondant Q148 Erreur d'offset dans le sens Y pour le transfert manuel dans au paramètre machine correspondant Q149 Erreur d'offset dans le sens Z pour le transfert manuel au paramètre machine correspondant 588 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Sens du positionnement Le sens du positionnement de l'axe rotatif à mesurer résulte de l'angle initial et de l'angle final que vous avez définis dans le cycle. Une mesure de référence est réalisée automatiquement à 0°. Sélectionner l'angle de départ et l'angle de fin de manière à ce que la commande n'ait pas à mesurer deux fois la même position. Toutefois, même s'il ne s'avère pas judicieux de procéder deux fois à la mesure de la même position (par ex. positions de mesure +90° et -270°), cela n'entraîne pas de message d'erreur. Exemple : angle initial = +90°, angle final = -90° Angle initial = +90° Angle final = -90° Nombre de points de mesure = 4 Incrément angulaire calculé = (-90° - +90°) / (4 – 1) = -60° Point de mesure 1 = +90° Point de mesure 2 = +30° Point de mesure 3 = -30° Point de mesure 4 = -90° Exemple : angle initial = +90°, angle final = +270° Angle initial = +90° Angle final = +270° Nombre de points de mesure = 4 Incrément angulaire calculé = (270° – 90°) / (4–1) = +60° Point de mesure 1 = +90° Point de mesure 2 = +150° Point de mesure 3 = +210° Point de mesure 4 = +270° HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 589 19 19 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Machines avec des axes à dentures Hirth REMARQUE Attention, risque de collision ! Pour le positionnement, l'axe doit sortir du crantage Hirth. La commande arrondit au besoin les positions de mesure de manière à ce qu'elles correspondent au crantage Hirth (dépend de l'angle de départ, de l'angle final et du nombre de points de mesure). Par conséquent, prévoir une distance d'approche suffisante pour éviter toute collision entre le palpeur et la bille étalon Dans le même temps, veiller à ce qu'il y ait suffisamment de place pour un positionnement à la distance d'approche (fin de course logiciel) REMARQUE Attention, risque de collision ! En fonction de la configuration de la machine, il se peut que la commande ne puisse pas positionner automatiquement les axes axes rotatifs. Dans ce cas, vous aurez besoin d'une fonction M spéciale du constructeur de la machine qui permette à la commande de déplacer les axes rotatifs. Pour cela, le constructeur de la machine doit avoir enregistré le numéro de la fonction M au paramètre machine mStrobeRotAxPos (n° 244803). Consultez la documentation du constructeur de votre machine. Définir une hauteur de retrait supérieure à 0 si l'option logicielle 2 n'est pas disponible. Les positions de mesure sont calculées à partir de l'angle initial, de l'angle final et du nombre de mesures pour l'axe concerné et la denture Hirth. 590 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Exemple de calcul des positions de mesure pour un axe A : Angle initial Q411 = -30 Angle final Q412 = +90 Nombre de points de mesure Q414 = 4 Denture Hirth = 3° Incrément angulaire calculé = (Q412 - Q411) / (Q414 -1) Incrément angulaire calculé = (90° - (-30°)) / (4 – 1) = 120 / 3 = 40° Position de mesure 1 = Q411 + 0 * incrément angulaire = -30° --> -30° Position de mesure 2 = Q411 + 1 * incrément angulaire = +10° --> 9° Position de mesure 3 = Q411 + 2 * incrément angulaire = +50° --> 51° Position de mesure 4 = Q411 + 3 * incrément angulaire = +90° --> 90° HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 591 19 19 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Choix du nombre de points de mesure Pour gagner du temps, il est possible d'effectuer une optimisation grossière avec un petit nombre de points de mesure (1 - 2), par ex. lors de la mise en service. Vous exécutez ensuite une optimisation fine avec un nombre moyen de points de mesure (valeur préconisée = 4). Un plus grand nombre de points de mesure n'apporte généralement pas de meilleurs résultats. Idéalement, il est conseillé de répartir régulièrement les points de mesure sur toute la plage d'inclinaison de l'axe. Un axe avec une plage d'inclinaison 0-360° se mesure donc idéalement avec trois points de mesure : 90°, 180° et 270°. Définissez alors un angle initial de 90° et un angle final de 270°. Si vous désirez contrôler la précision correspondante, vous pouvez alors indiquer un nombre plus élevé de points de mesure en mode Contrôler. Si un point de mesure est défini à 0°, celui-ci est ignoré car avec 0°, l'opération suivante est toujours la mesure de référence. 592 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Choix de la position de la bille étalon sur la table de la machine En principe, vous pouvez fixer la bille étalon à n'importe quel endroit accessible sur la table de la machine, mais également sur les dispositifs de serrage ou les pièces. Les facteurs suivants peuvent influencer positivement le résultat de la mesure : machines avec plateau circulaire/plateau pivotant : brider la bille étalon aussi loin que possible du centre de rotation. machines présentant de longues courses de déplacement : fixer la bille étalon aussi près que possible de la future position d'usinage. Mesure de la cinématique : précisionprécision Les erreurs de géométrie et de positionnement de la machine influent sur les valeurs de mesure et, par conséquent, sur l'optimisation d'un axe rotatif. Une erreur résiduelle que l'on ne peut pas éliminer sera ainsi toujours présente. S'il n'y avait pas d'erreurs de géométrie et de positionnement, on pourrait reproduire avec précision les valeurs déterminées par le cycle à n'importe quel emplacement sur la machine et à un moment précis. Plus les erreurs de géométrie et de positionnement sont importantes, et plus la dispersion des résultats est importante si vous faites les mesures à différentes postions. La dispersion figurant dans le procès-verbal de la commande est un indicateur de précision des mouvements statiques d'inclinaison d'une machine. Concernant la précision, il faut tenir compte également du rayon du cercle de mesure, du nombre et de la position des points de mesure. La dispersion ne peut pas être calculée avec un seul point de mesure. Dans ce cas, la dispersion indiquée correspond à l'erreur dans l'espace du point de mesure. Si plusieurs axes rotatifs se déplacent simultanément, leurs erreurs se superposent et, dans le cas le plus défavorable, elles s'additionnent. Si votre machine est équipée d'une broche asservie, il faudra activer l'actualisation angulaire dans le tableau des palpeurs (colonne TRACK). En général, cela permet d'améliorer la précision des mesures réalisées avec un palpeur 3D. Désactiver si nécessaire le blocage des axes rotatifs pendant toute la durée de la mesure, sinon les résultats de celle-ci peuvent être faussés. Consultez le manuel de votre machine. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 593 19 19 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Remarques relatives aux différentes méthodes d'étalonnage Optimisation grossière lors de la mise en route après l'introduction de valeurs approximatives Nombre de points de mesure entre 1 et 2 Incrément angulaire des axes rotatifs : environ 90° Optimisation précise sur toute la course de déplacement Nombre de points de mesure entre 3 et 6 L'angle initial et l'angle final doivent autant que possible couvrir une grande course de déplacement des axes rotatifs. Positionnez la bille étalon sur la table de la machine de manière à obtenir un grand rayon du cercle de mesure pour les axes rotatifs de la table. Sinon, faites en sorte que l'étalonnage ait lieu à une position représentative (par exemple, au centre de la zone de déplacement) pour les axes rotatifs de la tête. Optimisation d'une position spéciale de l'axe rotatif Nombre de points de mesure entre 2 et 3 Les mesures sont assurées autour de l'angle de l'axe rotatif où l'usinage doit être exécuté ultérieurement. Positionnez la bille étalon sur la table de la machine de manière à ce que la calibration ait lieu au même endroit que l'usinage. Vérifiez la précision de la machine. Nombre de points de mesure entre 4 et 8 L'angle initial et l'angle final doivent autant que possible couvrir une grande course de déplacement des axes rotatifs. Détermination du jeu de l'axe rotatif Nombre de points de mesure entre 8 et 12 L'angle initial et l'angle final doivent autant que possible couvrir une grande course de déplacement des axes rotatifs. 594 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Jeu à l'inversion Le jeu à l'inversion est un jeu très faible entre le capteur rotatif (système de mesure angulaire) et la table, généré lors d'un changement de direction, Si les axes rotatifs ont du jeu en dehors de la chaîne d'asservissement, ils peuvent générer d'importantes erreurs lors de l'inclinaison. Le paramètre de programmation Q432 permet d'activer la mesure du jeu à l'inversion. Pour cela, il vous faut indiquer l'angle que la commande utilisera comme angle à franchir. Le cycle exécute deux mesures par axe rotatif. Si vous programmez 0 comme valeur angulaire, la commande ne détermine pas de jeu à l'inversion. Le jeu à l'inversion ne peut pas être déterminé si une fonction M pour le positionnement des axes rotatifs est définie au paramètre machine optionnel mStrobeRotAxPos (n°204803) ou si l'axe est pourvu d’une denture Hirth. La commande n'applique aucune compensation automatique du jeu à l'inversion. Si le rayon du cercle de mesure est < 1 mm, la commande ne mesure plus le jeu à l'inversion. Plus le rayon du cercle de mesure est élevé, plus la commande est à même de déterminer précisément le jeu à l'inversion de l'axe rotatif (voir "Fonction journal", Page 602). HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 595 19 19 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Attention lors de la programmation ! Si la valeur du paramètre machine optionnel mStrobeRotAxPos (n°204803) est différente de -1 la (fonction M positionne les axes rotatifs), ne démarrer une mesure que si tous les axes rotatifs sont à 0°. A chaque procédure de palpage, la commande commence par déterminer le rayon de la bille étalon. Si le rayon de la bille déterminé diverge plus que ce que vous avez défini au paramètre machine optionnel maxDevCalBall (n°204802) par rapport au rayon de la bille programmé, la commande émet un message d'erreur et met fin à la mesure. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de lancer le cycle, veillez à ce que la fonction M128 ou FUNCTION TCPM soit désactivée. En mode Automatique, les cycles 453, 451 et 452 se quittent avec une 3D-ROT qui concorde avec la position des axes rotatifs. Choisir la position de la bille étalon sur la table de la machine de manière à ce que l'opération de mesure n'engendre aucune collision. Avant de définir le cycle, vous devez soit définir le point d'origine au centre de la bille étalon et l'activer, soit définir le paramètre de programmation Q431 en conséquence sur 1 ou 3. Pour l'avance de positionnement à la hauteur de palpage dans l'axe du palpeur, la commande utilise la plus petite valeur entre le paramètre Paramètres du cycle Q253 et la valeur FMAX du tableau des palpeurs. En principe, la commande exécute le mouvement des axes rotatifs avec l'avance de positionnement Q253 et la surveillance du palpeur désactivée. Dans la définition du cycle, la commande ignore les données des axes qui ne sont pas activés. Pour optimiser les angles, le constructeur de la machine peut inhiber la configuration en conséquence. Une correction au point zéro machine (Q406=3) ne peut alors avoir lieu que si les axes rotatifs de la tête ou de la table peuvent être mesurés. Une compensation de l'angle n'est possible qu'avec l'option 52 KinematicsComp. 596 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) En mode Optimisation, si les données cinématiques calculées sont supérieures à la valeur limite autorisée (maxModification n°204801), la commande émet un message d'avertissement. Vous devez ensuite confirmer la mémorisation des valeurs déterminées avec Start CN. Notez qu'une modification de la cinématique entraîne toujours une modification du point d'origine. Après une optimisation, redéfinir le point d'origine. Programmation en pouces (inch) : la commande émet en principe les résultats de mesures et les données de procès-verbal en mm. Pendant la définition du point d'origine, le rayon programmé de la bille étalon n'est surveillé que lors de la deuxième mesure. En effet, lorsque le prépositionnement de la bille étalon est imprécis et que vous procédez ensuite à une définition du point d'origine, la bille étalon est palpée deux fois. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 597 19 19 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Paramètres du cycle Q406 Mode (0/1/2/3)? : vous définissez ici si la commande doit contrôler ou optimiser la cinématique active : 0 : vérifier la cinématique active de la machine. La commande mesure la cinématique sur les axes rotatifs que vous avez définis et n'apporte aucune modification à la cinématique. La commande affiche les résultats de mesure dans un procèsverbal de mesure. 1 : optimiser la cinématique active de la machine. La commande mesure la cinématique dans les axes rotatifs que vous avez définis. Elle optimise ensuite la position des axes rotatifs de la cinématique active. 2 : optimiser la cinématique active. La commande mesure la cinématique sur les axes rotatifs que vous avez définis. Les erreurs d'angle et de position sont ensuite optimisées. Pour appliquer une correction d'erreur angulaire, vous devez être doté de l'option 52 KinematicsComp. 3 : optimiser la cinématique machine. La commande corrige ici automatiquement le point zéro machine. Les erreurs d'angle et de position sont ensuite optimisées. Il est nécessaire d'avoir l'option 52 KinematicsComp pour cela. Q407 Rayon bille calibr. exact? Indiquez le rayon exact de la bille étalon utilisée. Plage de programmation : 0,0001 à 99,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999sinon : PREDEF Q408 Hauteur de retrait? (en absolu) Plage de programmation 0,0001 à 99999,9999 0 : ne pas approche de hauteur de retrait. La commande approche la position de mesure suivante sur l'axe à mesurer. Non autorisé pour les axes Hirth ! La commande aborde la première position de mesure dans l'ordre A, B et C >0 : hauteur de retrait dans le système de coordonnées non incliné de la pièce à laquelle la commande positionne l'axe de la broche avant de positionner l'axe rotatif. La commande positionne en plus le palpeur au point zéro dans le plan d'usinage. La surveillance du palpeur est désactivée dans ce mode. Définir la vitesse de positionnement au paramètre Q253 Sauvegarder et contrôler la cinématique 4 TOOL CALL "PALPEUR" Z 5 TCH PROBE 450 SAUVEG. CINEMATIQUE Q410=0 ;MODE Q409=5 ;DESIGNATION MEMOIRE 6 TCH PROBE 451 MESURE CINEMATIQUE Q406=0 ;MODE Q407=12.5 ;RAYON BILLE Q320=0 ;DISTANCE D'APPROCHE Q408=0 ;HAUTEUR RETRAIT Q253=750 ;AVANCE PRE-POSIT. Q380=0 ;ANGLE DE REFERENCE Q411=-90 ;ANGLE INITIAL AXE A Q412=+90 ;ANGLE FINAL AXE A Q413=0 ;ANGLE REGL. AXE A Q414=0 ;POINTS MESURE AXE A Q415=-90 ;ANGLE INITIAL AXE B Q416=+90 ;ANGLE FINAL AXE B Q417=0 ;ANGLE REGL. AXE B Q418=2 ;POINTS MESURE AXE B Q419=-90 ;ANGLE INITIAL AXE C Q420=+90 ;ANGLE FINAL AXE C Q421=0 ;ANGLE REGL. AXE C Q422=2 ;POINTS MESURE AXE C Q423=4 ;NOMBRE DE PALPAGES Q431=0 ;PRESELECTION VALEUR Q432=0 ;PLAGE ANGULAIRE JEU Q253 Avance de pré-positionnement? Indiquez la vitesse de déplacement de l'outil lors du positionnement en mm/min. Plage de programmation : 0,0001 à 99999,9999 sinon FMAX, FAUTO, PREDEF 598 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Q380 Angle réf. axe princip.? (en absolu) Entrez l'angle de référence (la rotation de base) pour l'acquisition des points de mesure dans le système de coordonnées de la pièce actif. La définition d'un angle de référence peut accroître considérablement la plage de mesure d'un axe. Plage de programmation : 0 à 360,0000 Q411 Angle initial axe A? (en absolu) : angle de départ dans l'axe A auquel la première mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q412 Angle final axe A? (en absolu) : angle final dans l'axe A, auquel la dernière mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q413 Angle réglage axe A? : angle d'inclinaison de l'axe A auquel les autres axes rotatifs doivent être mesurés. Plage de programmation : -359,999 à 359,999 Q414 Nb pts de mesure en A (0...12)? : nombre d'opérations de palpage que la commande doit effectuer pour mesurer l'axe A. Si vous programmez la valeur 0, la commande ne mesure pas cet axe. Plage de programmation : 0 à 12 Q415 Angle initial axe B? (en absolu) : angle de départ dans l'axe B auquel la première mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q416 Angle final axe B? (en absolu) : angle final dans l'axe B, auquel la dernière mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q417 Angle réglage axe B? : angle d'inclinaison de l'axe B auquel les autres axes rotatifs doivent être mesurés. Plage de programmation : -359,999 à 359,999 Q418 Nb pts de mesure en B (0...12)? : nombre d'opérations de palpage que la commande doit exécuter pour mesurer l'axe B. Si vous programmez la valeur 0, la commande ne mesure pas cet axe. Plage de programmation : 0 à 12 Q419 Angle initial axe C? (en absolu) : angle de départ dans l'axe C auquel la première mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q420 Angle final axe C? (en absolu) : angle final dans l'axe C, auquel la dernière mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q421 Angle réglage axe C? : angle d'inclinaison de l'axe C auquel les autres axes rotatifs doivent être mesurés. Plage de programmation : -359,999 à 359,999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 599 19 19 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Q422 Nb pts de mesure en C (0...12)? : nombre d'opérations de palpage que la commande doit exécuter pour mesurer l'axe C. Plage de programmation : 0 à 12. Si vous programmez la valeur 0, la commande ne mesure pas cet axe Q423 Nombre de palpages? Vous définissez ici le nombre de palpages que la commande doit exécuter pour mesurer la bille étalon dans le plan. Plage de programmation : 3 à 8. Moins les points de mesure sont nombreux, plus la vitesse est élevée ; plus les points sont nombreux, plus la précision de mesure est grande. Q431 Présélection valeur (0/1/2/3)? Vous définissez ici si la commande doit ou non définir automatiquement le point d'origine actif au centre de la bille : 0 : ne pas définir le point d’origine automatiquement au centre de la bille : définir le point d’origine manuellement avant de lancer le cycle 1 : définir automatiquement le point d’origine au centre de la bille avant l'étalonnage (le point d’origine actif est écrasé) : prépositionner manuellement le palpeur au-dessus de la bille étalon avant de lancer le cycle 2 : définir automatiquement le point d’origine au centre de la bille après l'étalonnage (le point d’origine actif est écrasé) : définir manuellement le point d’origine avant de lancer le cycle 3 : définir le point d’origine au centre de la bille avant et après la mesure (le point d’origine actif est écrasé) : prépositionner manuellement le palpeur au-dessus de la bille étalon avant de lancer le cycle Q432 Plage angul. comp.jeu inversion? : vous définissez ici la valeur de dépassement angulaire qui doit être utilisée pour mesurer le jeu à l'inversion de l'axe rotatif. L'angle de dépassement doit être nettement supérieur au jeu réel des axes rotatifs. Si vous programmez la valeur 0, la commande ne mesure pas le jeu. Plage de programmation : -3.0000 à +3.0000 Si vous avez activé l'initialisation du point d’origine avant l’étalonnage (Q431 = 1/3), vous déplacez alors le palpeur à proximité du centre, à la distance d’approche (Q320 + SET_UP), au-dessus de la bille étalon avant de démarrer le cycle. 600 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Différents modes (Q406) Mode contrôler Q406 = 0 La commande mesure les axes rotatifs dans les positions définies et détermine la précision statique de la transformation d'orientation. La commande journalise les résultats d'une éventuelle optimisation des positions mais ne procède à aucune adaptation Optimiser le mode Position des axes rotatifs Q406 = 1 La commande mesure les axes rotatifs dans les positions définies et détermine la précision statique de la transformation d'orientation. La commande essaie de modifier la position de l'axe rotatif dans le modèle cinématique pour obtenir une meilleure précision. Les données de la machine sont adaptées automatiquement Mode optimiser position et angle Q406 = 2 La commande mesure les axes rotatifs dans les positions définies et détermine la précision statique de la transformation d'orientation. Dans un premier temps, la commande tente d'optimiser la position angulaire de l'axe rotatif par une compensation (option 52 KinematicsComp). Après l'optimisation angulaire, la TNC procède à une optimisation de la position. Pour cela, aucune mesure supplémentaire n'est requise : l'optimisation de la position est automatiquement calculée par la commande. Optimisation des positions des axes rotatifs après initialisation automatique du point d'origine et mesure du jeu de l'axe rotatif 1 TOOL CALL "PALPEUR" Z 2 TCH PROBE 451 MESURE CINEMATIQUE Q406=1 ;MODE Q407=12.5 ;RAYON BILLE Q320=0 ;DISTANCE D'APPROCHE Q408=0 ;HAUTEUR RETRAIT Q253=750 ;AVANCE PRE-POSIT. Q380=0 ;ANGLE DE REFERENCE Q411=-90 ;ANGLE INITIAL AXE A Q412=+90 ;ANGLE FINAL AXE A Q413=0 ;ANGLE REGL. AXE A Q414=0 ;POINTS MESURE AXE A Q415=-90 ;ANGLE INITIAL AXE B Q416=+90 ;ANGLE FINAL AXE B Q417=0 ;ANGLE REGL. AXE B Q418=4 ;POINTS MESURE AXE B Q419=+90 ;ANGLE INITIAL AXE C Q420=+270 ;ANGLE FINAL AXE C HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q421=0 ;ANGLE REGL. AXE C Q422=3 ;POINTS MESURE AXE C Q423=3 ;NOMBRE DE PALPAGES Q431=1 ;PRESELECTION VALEUR Q432=0.5 ;PLAGE ANGULAIRE JEU 601 19 19 Cycles palpeurs : mesure automatique de la cinématique | MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48) Fonction journal Après avoir exécuté le cycle 451, la commande génère un procèsverbal (TCHPR451.html) et mémorise le fichier journal dans le même répertoire que celui qui contient le programme CN associé. Le procès-verbal contient les données suivantes : Date et heure auxquelles le procès-verbal a été établi Chemin d'accès au programme CN à partir duquel le cycle a été exécuté Mode utilisé (0=contrôler/1=optimiser position/2=optimiser pos +angle) Numéro de la cinématique courante Rayon de la bille étalon introduit Pour chaque axe rotatif mesuré : Angle initial Angle final Angle de réglage Nombre de points de mesure Dispersion (écart standard) Erreur maximale Erreur angulaire Jeu moyen Erreur moyenne de positionnement Rayon du cercle de mesure Valeurs de correction sur tous les axes (décalage de point d'origine) Position des axes rotatifs qui ont été contrôlés avant l'optimisation (se réfère au début de la chaîne cinématique de transformation, généralement sur le nez de la broche) Position des axes rotatifs qui ont été contrôlés après l'optimisation (se réfère au début de la chaîne cinématique de transformation, généralement sur le nez de la broche) 602 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) 19.5 COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Mode opératoire du cycle Consultez le manuel de votre machine ! Le cycle palpeur 452 permet d'optimiser la chaîne de transformation cinématique de votre machine (voir "MESURER LA CINEMATIQUE (cycle 451, DIN/ISO : G451, option 48)", Page 587). La commande corrige ensuite également le système de coordonnées de la pièce dans le modèle de cinématique de la pièce, de manière à ce que le point d'origine actuel se trouve au centre de la bille étalon à la fin de l'optimisation. Ce cycle vous permet par exemple de régler entre elles des têtes interchangeables. 1 Fixer la bille étalon. 2 Mesurer entièrement la tête de référence avec le cycle 451 et utiliser ensuite le cycle 451 pour définir le point d'origine au centre de la bille 3 Installer la deuxième tête. 4 Etalonner la tête interchangeable avec le cycle 452 jusqu'au point de changement de tête. 5 Avec le cycle 452, régler les autres têtes interchangeables par rapport à la tête de référence. Si vous pouvez laisser la bille étalon fixée sur la table de la machine pendant l'usinage, cela vous permettra par exemple de compenser une dérive de la machine. Ce processus est également possible sur une machine sans axes rotatifs. 1 Fixer la bille étalon en faisant attention au risque de collision. 2 Définir le point d'origine sur la bille étalon 3 Définir le point d'origine sur la pièce et lancer l'usinage de la pièce 4 Avec le cycle 452, exécuter à intervalles réguliers une compensation du preset. La commande acquiert le décalage des axes impliquées et le corrige dans la cinématique. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 B+ C+ A+ 603 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Numéros de paramètres Signification Q141 Ecart standard mesuré dans l'axe A (–1 si l'axe n'a pas été mesuré) Q142 Ecart standard mesuré dans l'axe B (–1 si l'axe n'a pas été mesuré) Q143 Ecart standard mesuré dans l'axe C (–1 si l'axe n'a pas été mesuré) Q144 Ecart standard optimisé dans l'axe A (–1 si l'axe n'a pas été mesuré) Q145 Ecart standard optimisé dans l'axe B (–1 si l'axe n'a pas été mesuré) Q146 Ecart standard optimisé dans l'axe C (–1 si l'axe n'a pas été mesuré) Q147 Erreur d'offset dans le sens X pour le transfert manuel au paramètre machine correspondant Q148 Erreur d'offset dans le sens Y pour le transfert manuel dans au paramètre machine correspondant Q149 Erreur d'offset dans le sens Z pour le transfert manuel au paramètre machine correspondant 604 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Attention lors de la programmation ! Si les données cinématiques déterminées sont supérieures à la valeur limite autorisée (maxModification n°204801), la commande émet un message d'avertissement. Vous devez ensuite confirmer la mémorisation des valeurs déterminées avec Start CN. A chaque procédure de palpage, la commande commence par déterminer le rayon de la bille étalon. Si le rayon de la bille déterminé diverge plus que ce que vous avez défini au paramètre machine optionnel maxDevCalBall (n°204802) par rapport au rayon de la bille programmé, la commande émet un message d'erreur et met fin à la mesure. Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant de lancer le cycle, veillez à ce que la fonction M128 ou FUNCTION TCPM soit désactivée. En mode Automatique, les cycles 453, 451 et 452 se quittent avec une 3D-ROT qui concorde avec la position des axes rotatifs. Pour effectuer une compensation de preset, la cinématique doit avoir été préparée en conséquence. Consulter le manuel de la machine. Veiller à ce que toutes les fonctions d'inclinaison du plan d'usinage soient réinitialisées. Choisir la position de la bille étalon sur la table de la machine de manière à ce que l'opération de mesure n'engendre aucune collision. Avant de définir le cycle, vous devez définir le point d'origine au centre de la bille étalon et avoir activé ce dernier. Pour les axes qui ne sont pas dotés d'un système de mesure de positions, sélectionnez les points de mesure de manière à avoir une course de déplacement de 1° jusqu'au fin de course. La commande a besoin de cette course pour la compensation interne de jeu à l'inversion. Pour l'avance de positionnement à la hauteur de palpage dans l'axe du palpeur, la commande utilise la plus petite valeur entre le paramètre Paramètres du cycle Q253 et la valeur FMAX du tableau des palpeurs. En principe, la commande exécute le mouvement des axes rotatifs avec l'avance de positionnement Q253 et la surveillance du palpeur désactivée. Si vous interrompez le cycle pendant l'étalonnage, les données de cinématique risquent de ne plus être conformes à leur état d'origine. Avant d'effectuer une optimisation, sauvegarder la cinématique active avec le cycle 450 pour pouvoir restaurer la dernière cinématique active en cas d'erreur. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 605 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Notez qu'une modification de la cinématique entraîne toujours une modification du point d'origine. Après une optimisation, redéfinir le point d'origine. Programmation en pouces (inch) : la commande émet en principe les résultats de mesures et les données de procès-verbal en mm. 606 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Paramètres du cycle Q407 Rayon bille calibr. exact? Indiquez le rayon exact de la bille étalon utilisée. Plage de programmation : 0,0001 à 99,9999 Q320 Distance d'approche? (en incrémental) : distance supplémentaire entre le point de palpage et la bille de palpage. Q320 agit en plus de SET_UP (tableau de palpeurs). Plage de programmation : 0 à 99999,9999 Q408 Hauteur de retrait? (en absolu) Plage de programmation 0,0001 à 99999,9999 0 : ne pas approche de hauteur de retrait. La commande approche la position de mesure suivante sur l'axe à mesurer. Non autorisé pour les axes Hirth ! La commande aborde la première position de mesure dans l'ordre A, B et C >0 : hauteur de retrait dans le système de coordonnées non incliné de la pièce à laquelle la commande positionne l'axe de la broche avant de positionner l'axe rotatif. La commande positionne en plus le palpeur au point zéro dans le plan d'usinage. La surveillance du palpeur est désactivée dans ce mode. Définir la vitesse de positionnement au paramètre Q253 Programme de calibration 4 TOOL CALL "PALPEUR" Z 5 TCH PROBE 450 SAUVEG. CINEMATIQUE Q410=0 ;MODE Q409=5 ;DESIGNATION MEMOIRE 6 TCH PROBE 452 COMPENSATION PRESET Q407=12.5 ;RAYON BILLE Q320=0 ;DISTANCE D'APPROCHE Q408=0 ;HAUTEUR RETRAIT Q253=750 ;AVANCE PRE-POSIT. Q380=0 ;ANGLE DE REFERENCE Q411=-90 ;ANGLE INITIAL AXE A Q412=+90 ;ANGLE FINAL AXE A Q413=0 ;ANGLE REGL. AXE A Q414=0 ;POINTS MESURE AXE A Q415=-90 ;ANGLE INITIAL AXE B Q253 Avance de pré-positionnement? Indiquez la vitesse de déplacement de l'outil lors du positionnement en mm/min. Plage de programmation : 0,0001 à 99999,9999 sinon FMAX, FAUTO, PREDEF Q416=+90 ;ANGLE FINAL AXE B Q380 Angle réf. axe princip.? (en absolu) Entrez l'angle de référence (la rotation de base) pour l'acquisition des points de mesure dans le système de coordonnées de la pièce actif. La définition d'un angle de référence peut accroître considérablement la plage de mesure d'un axe. Plage de programmation : 0 à 360,0000 Q411 Angle initial axe A? (en absolu) : angle de départ dans l'axe A auquel la première mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q412 Angle final axe A? (en absolu) : angle final dans l'axe A, auquel la dernière mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q413 Angle réglage axe A? : angle d'inclinaison de l'axe A auquel les autres axes rotatifs doivent être mesurés. Plage de programmation : -359,999 à 359,999 Q414 Nb pts de mesure en A (0...12)? : nombre d'opérations de palpage que la commande doit effectuer pour mesurer l'axe A. Si vous programmez la valeur 0, la commande ne mesure pas cet axe. Plage de programmation : 0 à 12 Q420=+90 ;ANGLE FINAL AXE C HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q417=0 ;ANGLE REGL. AXE B Q418=2 ;POINTS MESURE AXE B Q419=-90 ;ANGLE INITIAL AXE C Q421=0 ;ANGLE REGL. AXE C Q422=2 ;POINTS MESURE AXE C Q423=4 ;NOMBRE DE PALPAGES Q432=0 ;PLAGE ANGULAIRE JEU 607 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Q415 Angle initial axe B? (en absolu) : angle de départ dans l'axe B auquel la première mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q416 Angle final axe B? (en absolu) : angle final dans l'axe B, auquel la dernière mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q417 Angle réglage axe B? : angle d'inclinaison de l'axe B auquel les autres axes rotatifs doivent être mesurés. Plage de programmation : -359,999 à 359,999 Q418 Nb pts de mesure en B (0...12)? : nombre d'opérations de palpage que la commande doit exécuter pour mesurer l'axe B. Si vous programmez la valeur 0, la commande ne mesure pas cet axe. Plage de programmation : 0 à 12 Q419 Angle initial axe C? (en absolu) : angle de départ dans l'axe C auquel la première mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q420 Angle final axe C? (en absolu) : angle final dans l'axe C, auquel la dernière mesure doit avoir lieu. Plage de programmation : -359,999 à 359,999 Q421 Angle réglage axe C? : angle d'inclinaison de l'axe C auquel les autres axes rotatifs doivent être mesurés. Plage de programmation : -359,999 à 359,999 Q422 Nb pts de mesure en C (0...12)? : nombre d'opérations de palpage que la commande doit exécuter pour mesurer l'axe C. Plage de programmation : 0 à 12. Si vous programmez la valeur 0, la commande ne mesure pas cet axe Q423 Nombre de palpages? Vous définissez ici le nombre de palpages que la commande doit exécuter pour mesurer la bille étalon dans le plan. Plage de programmation : 3 à 8. Moins les points de mesure sont nombreux, plus la vitesse est élevée ; plus les points sont nombreux, plus la précision de mesure est grande. Q432 Plage angul. comp.jeu inversion? : vous définissez ici la valeur de dépassement angulaire qui doit être utilisée pour mesurer le jeu à l'inversion de l'axe rotatif. L'angle de dépassement doit être nettement supérieur au jeu réel des axes rotatifs. Si vous programmez la valeur 0, la commande ne mesure pas le jeu. Plage de programmation : -3.0000 à +3.0000 608 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Réglage des têtes interchangeables L'objectif de cette procédure est de faire en sorte que le point d'origine reste inchangé sur la pièce après avoir changé les axes rotatifs (changement de tête). L'exemple suivant décrit le réglage d'une tête de fourche avec axes AC. L'axe A est changé, l'axe C fait partie de la configuration de base de la machine. Installer l'une des têtes interchangeables qui doit servir de tête de référence. Fixer la bille étalon. Installer le palpeur. Utiliser le cycle 451 pour étalonner intégralement la cinématique de la tête de référence. Définir le point d'origine (avec Q431 = 2 ou 3 dans le cycle 451) après avoir mesuré la tête de référence Etalonner la tête de référence 1 TOOL CALL "PALPEUR" Z 2 TCH PROBE 451 MESURE CINEMATIQUE Q406=1 ;MODE Q407=12.5 ;RAYON BILLE Q320=0 ;DISTANCE D'APPROCHE Q408=0 ;HAUTEUR RETRAIT Q253=2000 ;AVANCE PRE-POSIT. Q380=45 ;ANGLE DE REFERENCE Q411=-90 ;ANGLE INITIAL AXE A Q412=+90 ;ANGLE FINAL AXE A Q413=45 ;ANGLE REGL. AXE A Q414=4 ;POINTS MESURE AXE A Q415=-90 ;ANGLE INITIAL AXE B Q416=+90 ;ANGLE FINAL AXE B Q417=0 ;ANGLE REGL. AXE B Q418=2 ;POINTS MESURE AXE B Q419=+90 ;ANGLE INITIAL AXE C Q420=+270 ;ANGLE FINAL AXE C HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q421=0 ;ANGLE REGL. AXE C Q422=3 ;POINTS MESURE AXE C Q423=4 ;NOMBRE DE PALPAGES Q431=3 ;PRESELECTION VALEUR Q432=0 ;PLAGE ANGULAIRE JEU 609 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Installer la seconde tête interchangeable Installer le palpeur. Etalonner la tête interchangeable avec le cycle 452. N'étalonner que les axes qui ont été réellement changés (dans cet exemple, il s'agit uniquement de l'axe A ; l'axe C est ignoré avec Q422). Durant toute la procédure, vous ne pouvez pas modifier le point d'origine, ni la position de la bille d'étalonnage. Il est possible d'adapter de la même manière toutes les autres têtes interchangeables. Le changement de tête est une fonction spécifique à la machine. Consultez le manuel de votre machine. Régler la tête interchangeable. 3 TOOL CALL "PALPEUR" Z 4 TCH PROBE 452 COMPENSATION PRESET Q407=12.5 ;RAYON BILLE Q320=0 ;DISTANCE D'APPROCHE Q408=0 ;HAUTEUR RETRAIT Q253=2000 ;AVANCE PRE-POSIT. Q380=45 ;ANGLE DE REFERENCE Q411=-90 ;ANGLE INITIAL AXE A Q412=+90 ;ANGLE FINAL AXE A Q413=45 ;ANGLE REGL. AXE A Q414=4 ;POINTS MESURE AXE A Q415=-90 ;ANGLE INITIAL AXE B Q416=+90 ;ANGLE FINAL AXE B Q417=0 ;ANGLE REGL. AXE B Q418=2 ;POINTS MESURE AXE B Q419=+90 ;ANGLE INITIAL AXE C Q420=+270 ;ANGLE FINAL AXE C 610 Q421=0 ;ANGLE REGL. AXE C Q422=0 ;POINTS MESURE AXE C Q423=4 ;NOMBRE DE PALPAGES Q432=0 ;PLAGE ANGULAIRE JEU HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Compensation de dérive Pendant l'usinage, divers éléments de la machine peuvent subir une dérive due à des conditions environnementales variables. Dans le cas d'une dérive constante dans la zone de déplacement et si la bille étalon peut rester fixée sur la table de la machine pendant l'usinage, cette dérive peut être mesurée et compensée avec le cycle 452. Fixer la bille étalon. Installer le palpeur. Etalonner complètement la cinématique avec le cycle 451 avant de démarrer l'usinage. Après avoir mesuré la cinématique, définissez le point d'origine (avec Q432 = 2 ou 3 dans le cycle 451) Définissez ensuite les points d'origine de vos pièces et lancez l'usinage Mesure de référence pour la compensation de dérive 1 TOOL CALL "PALPEUR" Z 2 CYCL DEF 247 INIT. PT DE REF. Q339=1 ;NUMERO POINT DE REF. 3 TCH PROBE 451 MESURE CINEMATIQUE Q406=1 ;MODE Q407=12.5 ;RAYON BILLE Q320=0 ;DISTANCE D'APPROCHE Q408=0 ;HAUTEUR RETRAIT Q253=750 ;AVANCE PRE-POSIT. Q380=45 ;ANGLE DE REFERENCE Q411=+90 ;ANGLE INITIAL AXE A Q412=+270 ;ANGLE FINAL AXE A Q413=45 ;ANGLE REGL. AXE A Q414=4 ;POINTS MESURE AXE A Q415=-90 ;ANGLE INITIAL AXE B Q416=+90 ;ANGLE FINAL AXE B Q417=0 ;ANGLE REGL. AXE B Q418=2 ;POINTS MESURE AXE B Q419=+90 ;ANGLE INITIAL AXE C Q420=+270 ;ANGLE FINAL AXE C HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Q421=0 ;ANGLE REGL. AXE C Q422=3 ;POINTS MESURE AXE C Q423=4 ;NOMBRE DE PALPAGES Q431=3 ;PRESELECTION VALEUR Q432=0 ;PLAGE ANGULAIRE JEU 611 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Mesurer la dérive des axes à intervalles réguliers. Installer le palpeur. Activer le point d'origine sur la bille étalon Etalonner la cinématique avec le cycle 452. Durant toute la procédure, vous ne pouvez pas modifier le point d'origine, ni la position de la bille d'étalonnage. Cette procédure est également possible sur des machines sans axes rotatifs. Compenser la dérive. 4 TOOL CALL "PALPEUR" Z 5 TCH PROBE 452 COMPENSATION PRESET Q407=12.5 ;RAYON BILLE Q320=0 ;DISTANCE D'APPROCHE Q408=0 ;HAUTEUR RETRAIT Q253=99999;AVANCE PRE-POSIT. Q380=45 ;ANGLE DE REFERENCE Q411=-90 ;ANGLE INITIAL AXE A Q412=+90 ;ANGLE FINAL AXE A Q413=45 ;ANGLE REGL. AXE A Q414=4 ;POINTS MESURE AXE A Q415=-90 ;ANGLE INITIAL AXE B Q416=+90 ;ANGLE FINAL AXE B Q417=0 ;ANGLE REGL. AXE B Q418=2 ;POINTS MESURE AXE B Q419=+90 ;ANGLE INITIAL AXE C Q420=+270 ;ANGLE FINAL AXE C 612 Q421=0 ;ANGLE REGL. AXE C Q422=3 ;POINTS MESURE AXE C Q423=3 ;NOMBRE DE PALPAGES Q432=0 ;PLAGE ANGULAIRE JEU HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 19 Cycles palpeurs : mesure automatique de la cinématique | COMPENSATION DU PRESET (cycle 452, DIN/ISO : G452, option 48) Fonction journal Après l'exécution du cycle 452, la commande génère un fichier journal (TCHPR452.TXT) avec les données suivantes : Date et heure de création du fichier journal Chemin d'accès au programme CN à partir duquel le cycle a été exécuté Numéro de la cinématique active Rayon de la bille étalon introduit Pour chaque axe rotatif étalonné : Angle initial Angle final Angle de réglage Nombre de points de mesure Dispersion (écart standard) Erreur maximale Erreur angulaire Jeu moyen Erreur moyenne de positionnement Rayon du cercle de mesure Valeurs de correction sur tous les axes (décalage de point d'origine) Incertitude de mesure pour axes rotatifs Position des axes rotatifs qui ont été contrôlés avant la compensation du preset (se réfère au début de la chaîne cinématique de transformation, généralement sur le nez de la broche) Position des axes rotatifs qui ont été contrôlés après la compensation du preset (se réfère au début de la chaîne cinématique de transformation, généralement sur le nez de la broche) Explications concernant les valeurs log (voir "Fonction journal", Page 602) HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 613 20 Cycles palpeurs : étalonnage automatique des outils 20 Cycles palpeurs : étalonnage automatique des outils | Principes de base 20.1 Principes de base Résumé Consultez le manuel de votre machine ! Il est possible que tous les cycles ou fonctions décrits ici ne soient pas disponibles sur votre machine. Vous aurez besoin de l'option 17. La machine et la commande doivent avoir été préparées par le constructeur de la machine. Remarques sur l'utilisation Lors de l'exécution des cycles palpeur, les cycles 8 IMAGE MIROIR, 11 FACTEUR ECHELLE et 26 FACT. ECHELLE AXE ne doivent pas être actifs. HEIDENHAIN ne garantit le bon fonctionnement des cycles de palpage qu'avec les palpeurs HEIDENHAIN Grâce au palpeur d'outil et aux cycles d'étalonnage d'outils de la commande, vous pouvez effectuer automatiquement l'étalonnage de vos outils : les valeurs de correction de la longueur et du rayon sont stockées dans la mémoire centrale d'outils TOOL.T et calculées automatiquement à la fin du cycle de palpage. Modes d'étalonnage disponibles : Etalonnage de l'outil, avec l'outil à l'arrêt Etalonnage de l'outil, avec l'outil en rotation Etalonnage dent par dent 616 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Principes de base Les cycles d'étalonnage d'outil doivent être programmés en mode Programmation avec la touche TOUCH PROBE. Vous disposez des cycles suivants : Nouveau format Ancien format Cycle Page Etalonnage d'un TT, cycles 30 et 480 622 Etalonnage d'une longueur d'outil, cycles 31 et 481 624 Etalonnage d'un rayon d'outil, cycles 32 et 482 628 Etalonnage d'une longueur et d'un rayon d'outil, cycles 33 et 483 632 Etalonnage du TT 449 sans câble, cycle 484 636 Les cycles de mesure ne fonctionnent que si la mémoire centrale d'outils TOOL.T est active. Avant de travailler avec les cycles de mesure, vous devez saisir toutes les données nécessaires à l'étalonnage dans la mémoire centrale d'outils et appeler l'outil à étalonner avec TOOL CALL. Différences entre les cycles 31 à 33 et 481 à 483 Les fonctions et le déroulement des cycles sont absolument identiques. Cependant, entre les cycles 31 à 33 et 481 à 483 subsistent les deux différences suivantes : Les cycles 481 à 483 existent également en DIN/ISO, soit les cycles G481 à G483 Pour l'état de la mesure, les nouveaux cycles utilisent le paramètre fixe Q199 au lieu d'un paramètre sélectionnable. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 617 20 Cycles palpeurs : étalonnage automatique des outils | Principes de base Définir les paramètres machine Les cycles du palpeur de table 480, 481, 482, 483 et 484 peuvent être masqués avec le paramètre machine optionnel hideMeasureTT (n°128901). Avant de commencer à travailler avec les cycles de mesure, il faut contrôler tous les paramètres machine qui sont définis sous ProbeSettings > CfgTT (n°122700) et CfgTTRoundStylus (n°114200). Pour l'étalonnage avec la broche à l'arrêt, la commande utilise l'avance de palpage du paramètre machine probingFeed (n°122709). Pour l'étalonnage avec outil en rotation, la commande calcule automatiquement la vitesse de rotation broche et l'avance de palpage. La vitesse de rotation broche est calculée de la manière suivante : n = maxPeriphSpeedMeas / (r • 0,0063) avec n: Vitesse de rotation [tours/min.] maxPeriphSpeedMeas : Vitesse de coupe max. admissible [m/ min.] r: Rayon d'outil actif [mm] L'avance de palpage se calcule comme suit : v = tolérance de mesure • n avec v: Tolérance de mesure : n: 618 Avance de palpage [mm/min] Tolérance de mesure [mm], dépend de maxPeriphSpeedMeas Vitesse de rotation [tr/mn] HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Principes de base probingFeedCalc (n°122710) permet de calculer l'avance de palpage : probingFeedCalc (n°122710) = ConstantTolerance : La tolérance de mesure reste constante, indépendamment du rayon d'outil. En présence de gros outils, l'avance de palpage a néanmoins tendance à se rapprocher de zéro. Plus la vitesse de coupe maximale (maxPeriphSpeedMeas n° 122712) et la tolérance admissible (measureTolerance1 n° 122715) sélectionnées sont faibles, plus cet effet est rapide. probingFeedCalc (n°122710) = VariableTolerance : La tolérance de mesure varie en même temps que l'augmentation du rayon d'outil. Cela assure une avance de palpage suffisante même en présence d'outils à grand rayon. La commande modifie la tolérance de mesure selon le tableau suivant : Rayon d'outil Tolérance de mesure Jusqu’à 30 mm. measureTolerance1 30 à 60 mm 2 • measureTolerance1 60 à 90 mm 3 • measureTolerance1 90 à 120 mm 4 • measureTolerance1 probingFeedCalc (n° 122710) = ConstantFeed: L'avance de palpage reste constante, mais plus le rayon d'outil est grand, plus l'erreur de mesure croît de manière linéaire : Tolérance de mesure = (r • measureTolerance1) / 5 mm) avec r: measureTolerance1 : Rayon d'outil actif [mm] Erreur de mesure max. admissible HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 619 20 Cycles palpeurs : étalonnage automatique des outils | Principes de base Données du tableau d'outils TOOL.T Abrév. Données Dialogue CUT Nombre de dents de l'outil (20 dents max.) Nombre de dents? LTOL Écart admissible par rapport à la longueur d'outil L pour la détection de l'usure. Si la valeur programmée est dépassée, la commande verrouille l'outil (état L). Plage de programmation : 0 à 0,9999 mm Tolérance d'usure: longueur? RTOL Écart admissible par rapport au rayon d'outil R pour la détection de l'usure. Si la valeur programmée est dépassée, la commande verrouille l'outil (état L). Plage de programmation : 0 à 0,9999 mm Tolérance d'usure: rayon? R2TOL Écart admissible par rapport au rayon d'outil R2 pour la détection de l'usure. Si la valeur programmée est dépassée, la commande verrouille l'outil (état L). Plage de programmation : 0 à 0,9999 mm Tolérance d'usure: Rayon 2? DIRECT. Sens de coupe de l'outil pour la mesure avec un outil en rotation Sens d'usinage (M3 = –)? R-OFFS Etalonnage de la longueur : décalage de l'outil entre le centre du stylet et le centre de l'outil. Configuration par défaut : aucune valeur indiquée (décalage = rayon de l'outil) Désaxage outil: rayon? L-OFFS Étalonnage du rayon : décalage supplémentaire de l'outil par rapport à l'offsetToolAxis, entre l'arête supérieure du stylet et l'arête inférieure de l'outil. Valeur par défaut : 0 Désaxage outil: longueur? LBREAK Écart admissible par rapport à la longueur de l'outil L pour la détection de bris. Si la valeur programmée est dépassée, la commande verrouille l'outil (état L). Plage de programmation : 0 à 0,9999 mm Tolérance de rupture: longueur? RBREAK Écart admissible par rapport au rayon d'outil R pour la détection des bris. Si la valeur programmée est dépassée, la commande verrouille l'outil (état L). Plage de programmation : 0 à 0,9999 mm Tolérance de rupture: rayon? 620 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Principes de base Exemples de types d'outils courants Type d'outil CUT R-OFFS Foret Sans fonction 0: Pas de décalage nécessaire car la pointe du foret doit être mesurée. Fraise 2 tailles 4: 4 dents R: Un décalage est requis si le diamètre de l'outil est supérieur au diamètre du plateau du TT. 0: Pas de décalage supplémentaire nécessaire pour l'étalonnage du rayon. Le décalage utilisé provient du paramètre offsetToolAxis (n °122707). Fraise boule de 10 mm de diamètre 4: 4 dents 0: Pas de décalage nécessaire car le pôle sud de la boule doit être mesuré. 5: Avec un diamètre de 10 mm, le rayon d'outil est défini comme décalage. Si cela n'est pas le cas, le diamètre de la fraise boule sera mesuré trop bas. Le diamètre de l'outil est incorrect. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 L-OFFS 621 20 Cycles palpeurs : étalonnage automatique des outils | Etalonner TT (cycle 30 ou 480, DIN/ISO : G480, option 17) 20.2 Etalonner TT (cycle 30 ou 480, DIN/ISO : G480, option 17) Mode opératoire du cycle Consultez le manuel de votre machine ! Vous étalonnez le TT avec le cycle de mesure TCH PROBE 30 ou TCH PROBE 480. (voir "Différences entre les cycles 31 à 33 et 481 à 483", Page 617). La procédure d'étalonnage se déroule automatiquement. La commande détermine également de manière automatique l'excentricité de l'outil d'étalonnage. Pour cela, elle fait tourner la broche de 180° à la moitié du cycle d'étalonnage. Utiliser comme outil d'étalonnage une pièce parfaitement cylindrique, par exemple une tige cylindrique. La commande mémorise les valeurs d'étalonnage et en tient compte lors de l'étalonnage des outils suivants. Déroulement de l’étalonnage : 1 Fixer l'outil d'étalonnage. Utiliser comme outil d'étalonnage une pièce parfaitement cylindrique, par exemple une tige cylindrique 2 Positionner manuellement l’outil d’étalonnage au-dessus du centre du TT, dans le plan d’usinage 3 Positionner l’outil d’étalonnage dans l'axe d’outil à environ 15 mm + distance d'approche au-dessus du TT 4 Le premier mouvement de la commande s'effectue le long de l'axe d'outil. L'outil se déplace d'abord à la hauteur de sécurité qui correspond à la distance d'approche + 15 mm. 5 La procédure d’étalonnage le long de l’axe d’outil démarre. 6 L’étalonnage se fait ensuite dans le plan d'usinage. 7 La commande commence par positionner l'outil d'étalonnage dans le plan d'usinage, à une valeur qui égale à 11 mm + rayon TT + distance d’approche. 8 Ensuite, la commande fait descendre l'outil le long de l'axe d'outil et l’opération d’étalonnage démarre. 9 Pendant la procédure d’étalonnage, la commande exécute les déplacements en carré. 10 La commande mémorise les valeurs d'étalonnage et en tient compte lors de l'étalonnage des outils suivants. 11 Pour finir, la commande fait revenir la tige de palpage à la distance d'approche, le long de l'axe d’outil, et la positionne au centre du TT. 622 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Etalonner TT (cycle 30 ou 480, DIN/ISO : G480, option 17) Attention lors de la programmation! Le mode de fonctionnement du cycle dépend du paramètre machine optionnel probingCapability (n°122723). (Ce paramètre permet entre autres d'effectuer un étalonnage de longueur d’outil avec broche immobilisée et, en même temps, de bloquer un étalonnage de rayon d’outil et un étalonnage dent par dent.) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Le mode fonctionnel du cycle d’étalonnage dépend du paramètre machine CfgTTRoundStylus (n° 114200). Consultez le manuel de votre machine. Avant l'étalonnage, vous devez indiquer dans le tableau d'outils TOOL.T le rayon et la longueur exacts de l'outil d'étalonnage. Aux paramètres machine centerPos (n°114201) > [0] à [2], la position du TT doit être définie dans la zone d'usinage de la machine. Si vous modifiez un des paramètres machine centerPos (n°114201) > [0] jusqu'à [2], il vous faudra procéder à un nouvel étalonnage. Paramètres du cycle Q260 Hauteur de securite? : entrer la position sur l'axe de broche à laquelle toute collision avec des pièces ou des moyens de serrage est exclue. La hauteur de sécurité se réfère au point d'origine pièce courant. Si la hauteur de sécurité que vous programmez est si petite que la pointe de l'outil se trouve en dessous de l'arête supérieure du plateau, la commande positionne automatiquement l'outil d'étalonnage au-dessus du plateau (zone de sécurité indiquée au paramètre safetyDistToolAx (n°114203)). Plage de programmation : -99999,9999 à 99999,9999 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Exemple d'ancien format 6 TOOL CALL 1 Z 7 TCH PROBE 30.0 ETALONNAGE TT 8 TCH PROBE 30.1 HAUT.: +90 Exemple de nouveau format 6 TOOL CALL 1 Z 7 TCH PROBE 480 ETALONNAGE TT Q260=+100 ;HAUTEUR DE SECURITE 623 20 Cycles palpeurs : étalonnage automatique des outils | Mesurer une longueur d'outil (cycle 31 ou 481, DIN/ISO : G481, option 17) 20.3 Mesurer une longueur d'outil (cycle 31 ou 481, DIN/ISO : G481, option 17) Mode opératoire du cycle Consultez le manuel de votre machine ! Pour étalonner la longueur de l'outil, programmer le cycle de mesure TCH PROBE 31 ou TCH PROBE 481 (voir "Différences entre les cycles 31 à 33 et 481 à 483"). Vous pouvez déterminer la longueur d'outil de trois manières différentes par l'intermédiaire d'un paramètre : Si le diamètre de l'outil est supérieur au diamètre de la surface de mesure du TT, étalonnez avec un outil en rotation. Si le diamètre de l'outil est inférieur au diamètre de la surface de mesure du TT ou si vous déterminez la longueur de forets ou de fraises boules, étalonnez avec un outil à l'arrêt. Si le diamètre de l'outil est supérieur au diamètre de la surface de mesure du TT, effectuez l'étalonnage dent par dent avec un outil à l'arrêt. Mode opératoire de l'„étalonnage avec outil en rotation“ Pour déterminer la dent la plus longue, l'outil à étalonner est décalé au centre du système de palpage et déplacé en rotation sur le plateau de mesure du TT. Dans le tableau d'outils, vous programmez le décalage sous Décalage de l'outil: Rayon (R-OFFS). Déroulement de "l'étalonnage avec un outil à l'arrêt" (par ex. pour un foret) L'outil à étalonner est déplacé au centre, au dessus du plateau de mesure. Il se déplace ensuite avec broche à l'arrêt sur le plateau de mesure du TT. Pour cette mesure, vous devez entrer le décalage d'outil : rayon (R-OFFS) dans le tableau d'outils avec la valeur "0". Déroulement de "l'étalonnage dent par dent" La commande positionne l'outil à étalonner à côté de la tête de palpage. La face frontale de l'outil se trouve alors en dessous de l'arête supérieure de la tête de palpage, comme défini au paramètre offsetToolAxis (n°122707). Dans le tableau, sous Décalage d'outil: Longueur (L-OFFS), vous devez définir un décalage supplémentaire. La commande palpe ensuite l'outil en rotation, en radial, pour déterminer l'angle de départ de l'étalonnage dent par dent. Les longueurs de toutes les dents sont ensuite mesurées par le changement d'orientation de la broche. Pour cette mesure, programmez ETALONNAGE DENTS dans le cycle TCH PROBE 31 = 1. 624 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Mesurer une longueur d'outil (cycle 31 ou 481, DIN/ISO : G481, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Pour évaluer Q199, vous devez modifier le paramétrage de stopOnCeck (n°122717) et le régler sur FALSE. Le programme CN n'est pas interrompu en cas de dépassement de la tolérance de rupture. Il existe un risque de collision ! Assurez-vous d'interrompre le programme CN en cas de dépassement de la tolérance de rupture ! Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant d'étalonner des outils pour la première fois, vous devez renseigner approximativement le rayon, la longueur, le nombre de dents et le sens de coupe de l'outil concerné dans le tableau d'outils TOOL.T. L'étalonnage dent par dent est possible pour les outils avec 20 dents au maximum. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 625 20 Cycles palpeurs : étalonnage automatique des outils | Mesurer une longueur d'outil (cycle 31 ou 481, DIN/ISO : G481, option 17) Paramètres du cycle Q340 Mode Etalonnage d'outil (0-2)? : vous définissez ici si les données déterminées doivent être entrées ou non dans le tableau d'outils, et comment. 0 : la longueur d'outil mesurée est inscrite dans la mémoire L du tableau d'outils TOOL.T et la correction de l'outil est définie comme suit : DL=0. Si une valeur a déjà été configurée dans TOOL.T, celle-ci sera écrasée. 1 : la longueur d'outil mesurée est comparée à la longueur d'outil L contenue dans TOOL.T. La commande calcule l'écart et renseigne ce résultat comme valeur delta DL dans le tableau d'outils TOOL.T. Cet écart est également disponible dans le paramètre Q115. Si la valeur delta est supérieure à la valeur de tolérance d'usure ou de bris admissible pour la longueur d'outil, la commande verrouille l'outil (état L dans TOOL.T) 2 : la longueur d'outil mesurée est comparée à la longueur L de l'outil définie dans TOOL.T. La commande calcule l'écart et enregistre la valeur au paramètre Q115. L'entrée sous L ou DL, dans le tableau d'outils, reste vide. Q260 Hauteur de securite? : entrer la position sur l'axe de broche à laquelle toute collision avec des pièces ou des moyens de serrage est exclue. La hauteur de sécurité se réfère au point d'origine actif de la pièce. Si vous programmez une hauteur de sécurité si faible que la pointe de l'outil se trouve alors en dessous de l'arête supérieure du plateau, la commande positionne automatiquement l'outil au-dessus du plateau (zone de sécurité du paramètre safetyDistStylus). Plage de programmation : -99999,9999 à 99999,9999 Q341 Etalonnage dents? 0=non/1=oui : vous définissez ici si l'étalonnage dent par dent doit ou non être exécuté (possibilité d'étalonner jusqu'à 20 dents max.) Informations complémentaires, Page 627 626 Exemple de nouveau format 6 TOOL CALL 12 Z 7 TCH PROBE 481 LONGUEUR D'OUTIL Q340=1 ;CONTROLE Q260=+100 ;HAUTEUR DE SECURITE Q341=1 ;ETALONNAGE DENTS HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Mesurer une longueur d'outil (cycle 31 ou 481, DIN/ISO : G481, option 17) Le cycle 31 contient un paramètre supplémentaire : No. paramètre pour résultat? : numéro de paramètre auquel la commande enregistre l'état de la mesure : 0,0 : outil dans la limite de tolérance 1,0 : outil usé (valeur LTOL dépassée) 2,0 : outil cassé (valeur LBREAK dépassée) Si vous ne souhaitez pas continuer à travailler avec ce résultat de mesure dans ce programme CN, répondez au dialogue avec la touche NO ENT Premier étalonnage avec outil en rotation : ancien format 6 TOOL CALL 12 Z 7 TCH PROBE 31.0 LONGUEUR D'OUTIL 8 TCH PROBE 31.1 CONTROLE: 0 9 TCH PROBE 31.2 HAUT.: +120 10 TCH PROBE 31.3 ETALONNAGE DENTS: 0 Contrôle avec étalonnage dent par dent, mémorisation de l'état dans Q5 : ancien format 6 TOOL CALL 12 Z 7 TCH PROBE 31.0 LONGUEUR D'OUTIL 8 TCH PROBE 31.1 CONTROLE: 1 Q5 9 TCH PROBE 31.2 HAUT.: +120 10 TCH PROBE 31.3 ETALONNAGE DENTS: 1 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 627 20 Cycles palpeurs : étalonnage automatique des outils | Etalonnage du rayon d'outil (cycle 32 ou 482, DIN/ISO : G482, option 17) 20.4 Etalonnage du rayon d'outil (cycle 32 ou 482, DIN/ISO : G482, option 17) Mode opératoire du cycle Consultez le manuel de votre machine ! Pour étalonner un rayon d'outil, vous programmez le cycle de mesure TCH PROBE 32 ou TCH PROBE 482 (voir "Différences entre les cycles 31 à 33 et 481 à 483", Page 617). Vous pouvez vous servir de paramètres de programmation pour déterminer le rayon d'outil de deux manières : Etalonnage avec outil en rotation Etalonnage avec un outil en rotation, puis étalonnage dent par dent La commande positionne l'outil à étalonner à côté de la tête de palpage. La face frontale de la fraise se trouve alors en dessous de l'arête supérieure de la tête de palpage, comme défini au paramètre offsetToolAxis (n°122707). La commande effectue ensuite un palpage en radial avec un outil en rotation. Si vous souhaitez réaliser en plus un étalonnage dent par dent, le rayon de toutes les dents est étalonné au moyen d'une orientation de la broche. 628 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Etalonnage du rayon d'outil (cycle 32 ou 482, DIN/ISO : G482, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Pour évaluer Q199, vous devez modifier le paramétrage de stopOnCeck (n°122717) et le régler sur FALSE. Le programme CN n'est pas interrompu en cas de dépassement de la tolérance de rupture. Il existe un risque de collision ! Assurez-vous d'interrompre le programme CN en cas de dépassement de la tolérance de rupture ! Le mode de fonctionnement du cycle dépend du paramètre machine optionnel probingCapability (n°122723). (Ce paramètre permet entre autres d'effectuer un étalonnage de longueur d’outil avec broche immobilisée et, en même temps, de bloquer un étalonnage de rayon d’outil et un étalonnage dent par dent.) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant d'étalonner des outils pour la première fois, vous devez renseigner approximativement le rayon, la longueur, le nombre de dents et le sens de coupe de l'outil concerné dans le tableau d'outils TOOL.T. Les outils de forme cylindrique avec revêtement diamant peuvent être étalonnés avec broche à l'arrêt. Pour cela, vous devez définir à 0 le nombre des dents CUT dans le tableau d'outils et adapter le paramètre machine CfgTT (n°122700). Consultez le manuel de votre machine. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 629 20 Cycles palpeurs : étalonnage automatique des outils | Etalonnage du rayon d'outil (cycle 32 ou 482, DIN/ISO : G482, option 17) Paramètres du cycle Q340 Mode Etalonnage d'outil (0-2)? : vous définissez ici si les données déterminées doivent être entrées ou non dans le tableau d'outils, et comment. 0 : le rayon d'outil mesuré est inscrit dans le tableau d'outils TOOL.T, sous R, et la correction de l'outil est définie comme suit : DR=0. Si une valeur a déjà été configurée dans TOOL.T, celle-ci sera écrasée. 1 : le rayon d'outil mesuré est comparé au rayon d'outil R contenu dans TOOL.T. La commande calcule l'écart et renseigne ce résultat comme valeur delta DL dans le tableau d'outils TOOL.T. Cet écart est également disponible dans le paramètre Q116. Si la valeur Delta est supérieure à la valeur de tolérance d'usure ou de bris admissible pour le rayon d'outil, la commande verrouille l'outil (état L dans TOOL.T) 2 : le rayon d'outil mesuré est comparé au rayon d'outil défini dans TOOL.T. La commande calcule l'écart et l'enregistre au paramètre Q116. L'entrée sous R ou DR, dans le tableau d'outils, reste vide. Q260 Hauteur de securite? : entrer la position sur l'axe de broche à laquelle toute collision avec des pièces ou des moyens de serrage est exclue. La hauteur de sécurité se réfère au point d'origine actif de la pièce. Si vous programmez une hauteur de sécurité si faible que la pointe de l'outil se trouve alors en dessous de l'arête supérieure du plateau, la commande positionne automatiquement l'outil au-dessus du plateau (zone de sécurité du paramètre safetyDistStylus). Plage de programmation : -99999,9999 à 99999,9999 Q341 Etalonnage dents? 0=non/1=oui : vous définissez ici si l'étalonnage dent par dent doit ou non être exécuté (possibilité d'étalonner jusqu'à 20 dents max.) Informations complémentaires, Page 631 630 Exemple de nouveau format 6 TOOL CALL 12 Z 7 TCH PROBE 482 RAYON D'OUTIL Q340=1 ;CONTROLE Q260=+100 ;HAUTEUR DE SECURITE Q341=1 ;ETALONNAGE DENTS HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Etalonnage du rayon d'outil (cycle 32 ou 482, DIN/ISO : G482, option 17) Le cycle 32 contient un paramètre supplémentaire : No. paramètre pour résultat? : numéro de paramètre auquel la commande enregistre l'état de la mesure : 0,0 : outil dans la limite de tolérance 1,0 : outil usé (valeur RTOL dépassée) 2,0 : outil cassé (valeur RBREAK dépassée) Si vous ne souhaitez pas continuer à travailler avec le résultat de la mesure dans ce programme CN, répondre au dialogue avec la touche NO ENT Premier étalonnage avec outil en rotation : ancien format 6 TOOL CALL 12 Z 7 TCH PROBE 32.0 RAYON D'OUTIL 8 TCH PROBE 32.1 CONTROLE: 0 9 TCH PROBE 32.2 HAUT.: +120 10 TCH PROBE 32.3 ETALONNAGE DENTS: 0 Contrôle avec étalonnage dent par dent, mémorisation de l'état dans Q5 : ancien format 6 TOOL CALL 12 Z 7 TCH PROBE 32.0 RAYON D'OUTIL 8 TCH PROBE 32.1 CONTROLE: 1 Q5 9 TCH PROBE 32.2 HAUT.: +120 10 TCH PROBE 32.3 ETALONNAGE DENTS: 1 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 631 20 Cycles palpeurs : étalonnage automatique des outils | Etalonner intégralement l'outil (cycle 33 ou 483, DIN/ISO : G483, option 17) 20.5 Etalonner intégralement l'outil (cycle 33 ou 483, DIN/ISO : G483, option 17) Mode opératoire du cycle Consultez le manuel de votre machine ! Pour étalonner complètement l'outil (longueur et rayon), vous programmez le cycle de mesure TCH PROBE 33 ou TCH PROBE 483 (voir "Différences entre les cycles 31 à 33 et 481 à 483", Page 617). Le cycle convient particulièrement à un premier étalonnage d'outils. Il représente en effet un gain de temps considérable comparé à l'étalonnage dent par dent de la longueur et du rayon. Vous pouvez étalonner l'outil de deux manières différentes par l'intermédiaire de paramètres : étalonnage avec l'outil en rotation Etalonnage avec un outil en rotation, puis étalonnage dent par dent La commande étalonne l'outil selon une procédure figée au préalable. D'abord le rayon d'outil est étalonné, puis la longueur d'outil. L'opération de mesure se déroule selon les différentes étapes des cycles de mesure 31 et 32, 481 et 482. 632 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Etalonner intégralement l'outil (cycle 33 ou 483, DIN/ISO : G483, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Pour évaluer Q199, vous devez modifier le paramétrage de stopOnCeck (n°122717) et le régler sur FALSE. Le programme CN n'est pas interrompu en cas de dépassement de la tolérance de rupture. Il existe un risque de collision ! Assurez-vous d'interrompre le programme CN en cas de dépassement de la tolérance de rupture ! Le mode de fonctionnement du cycle dépend du paramètre machine optionnel probingCapability (n°122723). (Ce paramètre permet entre autres d'effectuer un étalonnage de longueur d’outil avec broche immobilisée et, en même temps, de bloquer un étalonnage de rayon d’outil et un étalonnage dent par dent.) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. Avant d'étalonner des outils pour la première fois, vous devez renseigner approximativement le rayon, la longueur, le nombre de dents et le sens de coupe de l'outil concerné dans le tableau d'outils TOOL.T. Les outils de forme cylindrique avec revêtement diamant peuvent être étalonnés avec broche à l'arrêt. Pour cela, vous devez définir à 0 le nombre des dents CUT dans le tableau d'outils et adapter le paramètre machine CfgTT (n°122700). Consultez le manuel de votre machine. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 633 20 Cycles palpeurs : étalonnage automatique des outils | Etalonner intégralement l'outil (cycle 33 ou 483, DIN/ISO : G483, option 17) Paramètres du cycle Q340 Mode Etalonnage d'outil (0-2)? : vous définissez ici si les données déterminées doivent être entrées ou non dans le tableau d'outils, et comment. 0 : la longueur et le rayon d'outil mesurés sont mémorisés dans le tableau d'outils TOOL.T, respectivement sous L et R et les corrections d'outil sont définies comme suit : DL=0 et DR=0. Si une valeur a déjà été configurée dans TOOL.T, celle-ci sera écrasée. 1 : la longueur et le rayon d'outil mesurés sont comparés à la longueur L et au rayon R de l'outil définis dans TOOL.T. La commande calcule l'écart et le reporte comme valeur delta DL ou DR dans TOOL.T. Cet écart se trouve aussi au paramètre Q Q115 et au paramètre Q116. Si la valeur Delta est supérieure à la valeur de tolérance d'usure ou de bris admissible pour la longueur ou le rayon d'outil, la commande verrouille l'outil (état L dans TOOL.T) 2 : la longueur d'outil et le rayon d'outil mesurés sont comparés au rayon R et à la longueur L de l'outil définis dans TOOL.T. La commande calcule l'écart et enregistre la valeur au paramètre Q115 ou Q116. Dans le tableau d'outils, l'entrée sous L, R ou DL, DR reste vide. Q260 Hauteur de securite? : entrer la position sur l'axe de broche à laquelle toute collision avec des pièces ou des moyens de serrage est exclue. La hauteur de sécurité se réfère au point d'origine actif de la pièce. Si vous programmez une hauteur de sécurité si faible que la pointe de l'outil se trouve alors en dessous de l'arête supérieure du plateau, la commande positionne automatiquement l'outil au-dessus du plateau (zone de sécurité du paramètre safetyDistStylus). Plage de programmation : -99999,9999 à 99999,9999 Q341 Etalonnage dents? 0=non/1=oui : vous définissez ici si l'étalonnage dent par dent doit ou non être exécuté (possibilité d'étalonner jusqu'à 20 dents max.) Informations complémentaires, Page 635 634 Exemple de nouveau format 6 TOOL CALL 12 Z 7 TCH PROBE 483 MESURER OUTIL Q340=1 ;CONTROLE Q260=+100 ;HAUTEUR DE SECURITE Q341=1 ;ETALONNAGE DENTS HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Etalonner intégralement l'outil (cycle 33 ou 483, DIN/ISO : G483, option 17) Le cycle 33 contient un paramètre supplémentaire : No. paramètre pour résultat? : numéro de paramètre auquel la commande mémorise l'état de la mesure : 0,0 : outil dans la limite de la tolérance 1,0 : outil usé (valeur LTOL ou/et RTOL dépassée) 2,0 : outil cassé (valeur LBREAK ou/et RBREAK dépassée) Si vous ne souhaitez pas continuer à travailler avec ce résultat de mesure dans le programme CN, répondre au dialogue avec la touche NO ENT Premier étalonnage avec outil en rotation : ancien format 6 TOOL CALL 12 Z 7 TCH PROBE 33.0 MESURER OUTIL 8 TCH PROBE 33.1 CONTROLE: 0 9 TCH PROBE 33.2 HAUT.: +120 10 TCH PROBE 33.3 ETALONNAGE DENTS: 0 Contrôle avec étalonnage dent par dent, mémorisation de l'état dans Q5 : ancien format 6 TOOL CALL 12 Z 7 TCH PROBE 33.0 MESURER OUTIL 8 TCH PROBE 33.1 CONTROLE: 1 Q5 9 TCH PROBE 33.2 HAUT.: +120 10 TCH PROBE 33.3 ETALONNAGE DENTS: 1 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 635 20 Cycles palpeurs : étalonnage automatique des outils | Etalonnage du TT 449 sans fil (cycle 484, DIN/ISO : G484, option 17) 20.6 Etalonnage du TT 449 sans fil (cycle 484, DIN/ISO : G484, option 17) Principes Le cycle 484 vous permet d'étalonner votre palpeur d'outil, par ex. le palpeur de table TT 449 à infrarouge (sans fil). La procédure d'étalonnage s'effectue de manière complètement automatique ou semi-automatique, suivant ce que vous avez paramétré. Semi-automatique - avec un arrêt avant le début du cycle : vous êtes invité à déplacer manuellement l'outil au-dessus du TT. Complètement automatique - sans arrêt avant le début du cycle : vous devez déplacer l'outil au-dessus du palpeur TT avant d'utiliser le cycle 484. Mode opératoire du cycle Consultez le manuel de votre machine ! Pour étalonner votre palpeur d'outil, programmez le cycle de mesure TCH PROBE 484. Au paramètre Q536, vous pouvez définir si le cycle doit être exécuté de manière semi-automatique ou complètement automatique. Semi-automatique - avec arrêt avant le début du cycle Installer l'outil d'étalonnage Définir et démarrer le cycle d'étalonnage La CN interrompt le cycle d'étalonnage et ouvre une boîte de dialogue dans une nouvelle fenêtre. Vous êtes alors invité à positionner manuellement l'outil d'étalonnage au-dessus du centre du palpeur. Assurez-vous que l'outil d'étalonnage se trouve au-dessus de la surface de mesure de l'élément de palpage. Complètement automatique - sans arrêt avant le début du cycle Installer l'outil d'étalonnage Positionnez l'outil d'étalonnage au-dessus du centre du palpeur Assurez-vous que l'outil d'étalonnage se trouve au-dessus de la surface de mesure de l'élément de palpage. Définir et démarrer le cycle d'étalonnage Le cycle d'étalonnage est exécuté sans interruption à partir de la position à laquelle se trouve actuellement l'outil. Outil d'étalonnage : Utiliser comme outil d'étalonnage une pièce parfaitement cylindrique, par exemple une tige cylindrique. Indiquer dans le tableau d'outils TOOL.T le rayon et la longueur exacts de l'outil d'étalonnage. A la fin de la procédure d'étalonnage, la commande mémorise les valeurs d'étalonnage et en tient compte pour les étalonnages d'outil suivants. L'outil d'étalonnage devrait présenter un diamètre supérieur à 15 mm et sortir d'environ 50 mm du mandrin de serrage. 636 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 20 Cycles palpeurs : étalonnage automatique des outils | Etalonnage du TT 449 sans fil (cycle 484, DIN/ISO : G484, option 17) Attention lors de la programmation ! REMARQUE Attention, risque de collision ! Si vous souhaitez éviter une collision, il faut que l'outil soit pré-positionné avec Q536=1, avant l'appel du cycle ! Lors de la procédure d'étalonnage, la commande détermine aussi l'excentrement de l'outil d'étalonnage. Pour cela, elle fait tourner la broche de 180° à la moitié du cycle d'étalonnage. Vous définissez si un arrêt doit avoir lieu avant le début du cycle ou bien si vous souhaitez lancer le cycle automatiquement sans interruption. Le mode de fonctionnement du cycle dépend du paramètre machine optionnel probingCapability (n°122723). (Ce paramètre permet entre autres d'effectuer un étalonnage de longueur d’outil avec broche immobilisée et, en même temps, de bloquer un étalonnage de rayon d’outil et un étalonnage dent par dent.) Ce cycle ne peut être exécuté qu'en mode FUNCTION MODE MILL. L'outil d'étalonnage devrait présenter un diamètre supérieur à 15 mm et sortir d'environ 50 mm du mandrin de serrage. Si vous utilisez une tige cylindrique avec ces cotes, il en résultera seulement une déformation de 0,1 µm pour une force de palpage de 1 N. Si vous utilisez un outil d'étalonnage dont le diamètre est trop petit et/ou qui se trouve trop éloigné du mandrin de serrage, cela peut être source d'imprécisions plus ou moins importantes. Avant l'étalonnage, vous devez indiquer dans le tableau d'outils TOOL.T le rayon et la longueur exacts de l'outil d'étalonnage. Le TT doit être réétalonné si vous modifiez sa position sur la table. HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 637 20 Cycles palpeurs : étalonnage automatique des outils | Etalonnage du TT 449 sans fil (cycle 484, DIN/ISO : G484, option 17) Paramètres du cycle Q536 Arrêt avant exécution (0=arrêt)? : vous définissez ici si un arrêt doit avoir lieu avant le début du cycle ou si vous souhaitez lancer le cycle automatiquement sans interruption : 0 : avec arrêt avant le début du cycle. Une boîte de dialogue vous invite à positionner manuellement l'outil au-dessus du palpeur de table. Si vous avez atteint la position approximative au-dessus du palpeur de table, vous pouvez soit poursuivre l'usinage avec Start CN, soit interrompre le programme avec la softkey ANNULER 1 : sans arrêt avant le début du cycle. La commande lance la procédure d'étalonnage à partir de la position actuelle. Avant de lancer le cycle 484, vous devez amener l'outil au-dessus du palpeur de table. 638 Exemple 6 TOOL CALL 1 Z 7 TCH PROBE 484 ETALONNAGE TT Q536=+0 ;STOP AVANT EXECUTION HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 21 Tableau récapitulatif: Cycles 21 Tableau récapitulatif: Cycles | Tableau récapitulatif 21.1 Tableau récapitulatif Cycles d'usinage Numéro de cycle Désignation de cycle Actif DEF 7 Décalage du point zéro ■ 213 8 Image miroir ■ 221 9 Temporisation ■ 357 10 Rotation ■ 223 11 Facteur échelle ■ 225 12 Appel de programme ■ 358 13 Orientation broche ■ 360 14 Définition du contour ■ 255 18 Filetage 19 Inclinaison du plan d'usinage ■ 228 20 Données de contour SL II ■ 260 21 Pré-perçage SL II ■ 262 22 Evidement SL II ■ 264 23 Finition en profondeur SL II ■ 269 24 Finition latérale SL II ■ 271 25 Tracé de contour ■ 277 26 Facteur échelle spécifique par axe 27 Corps d'un cylindre ■ 321 28 Rainurage sur le corps d'un cylindre ■ 324 29 Corps d'un cylindre, traverse ■ 329 32 Tolérance 39 Corps d'un cylindre, contour externe ■ 332 200 Perçage ■ 77 201 Alésage à l'alésoir ■ 80 202 Alésage à l'outil ■ 82 203 Perçage universel ■ 86 204 Lamage en tirant ■ 92 205 Perçage profond universel ■ 96 206 Taraudage avec mandrin de compensation, nouveau ■ 123 207 Nouveau taraudage rigide ■ 126 208 Fraisage de trous ■ 104 209 Taraudage avec brise-copeaux ■ 131 220 Motifs de points sur un cercle ■ 242 221 Motifs de points sur grille ■ 245 640 Actif CALL ■ ■ Page 381 226 ■ 361 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 21 Tableau récapitulatif: Cycles | Tableau récapitulatif Numéro de cycle Désignation de cycle Actif DEF 224 Motif DataMatrix-Code ■ 225 Gravure ■ 365 232 Fraisage multipasses ■ 371 233 Surfaçage (sens de fraisage au choix ; tenir compte des parois latérales) ■ 200 238 Mesure de l'état de la machine ■ 376 239 Calcul de la charge ■ 378 240 Centrage ■ 115 241 Perçage profond monolèvre ■ 107 247 Initialisation du point d'origine 251 Poche rectangulaire, usinage intégral ■ 161 252 Poche circulaire, usinage intégral ■ 167 253 Rainurage ■ 174 254 Rainure circulaire ■ 179 256 Tenon rectangulaire, usinage intégral ■ 185 257 Tenon circulaire, usinage intégral ■ 190 258 Tenon polygonal ■ 194 262 Fraisage de filets ■ 137 263 Filetage sur un tour ■ 141 264 Filetage avec perçage ■ 145 265 Filetage hélicoïdal avec perçage ■ 149 267 Fraisage de filet extérieur ■ 153 270 Données du tracé du contour ■ 275 271 Données de contour OCM ■ 303 272 Ebauche OCM ■ 305 273 Profondeur de finition OCM ■ 309 274 Finition latérale OCM ■ 311 275 Rainure trochoïdale ■ 281 276 Tracé de contour 3D ■ 287 HEIDENHAIN | TNC 620 | Programmation des cycles | 10/2019 Actif CALL Page 247 ■ 235 641 21 Tableau récapitulatif: Cycles | Tableau récapitulatif Cycles palpeurs Numéro de cycle Désignation de cycle Actif DEF 0 Plan de référence ■ 514 1 Point de référence en polaire ■ 515 3 Mesure ■ 557 4 Mesure 3D ■ 559 30 Etalonnage du TT ■ 622 31 Etalonnage/contrôle de la longueur d'outil ■ 624 32 Mesure/contrôle du rayon d'outil ■ 628 33 Etalonnage/contrôle de la longueur et du rayon d'outil ■ 632 400 Rotation de base à partir de deux points ■ 422 401 Rotation de base à partir de deux trous ■ 425 402 Rotation de base à partir de deux tenons ■ 429 403 Compenser le désalignement avec l'axe rotatif ■ 434 404 Initialiser la rotation de base ■ 443 405 Compenser un désalignement avec l'axe C ■ 439 408 Initialiser le point d'origine au centre d'une rainure (fonction FCL 3) ■ 494 409 Initialiser le point d'origine au centre d'un ilot oblong (fonction FCL 3) ■ 499 410 Initialiser point d'origine intérieur rectangle ■ 450 411 Initialiser point d'origine extérieur rectangle ■ 454 412 Initialiser point d'origine intérieur cercle (trou) ■ 458 413 Initialiser point d'origine extérieur cercle (tenon) ■ 463 414 Initialiser point d'origine extérieur coin ■ 468 415 Initialiser point d'origine intérieur coin ■ 473 416 Initialiser point d'origine centre cercle de trous ■ 478 417 Initialiser point d'origine dans l'axe du palpeur ■ 483 418 Initialiser point d'origine au centre de 4 trous ■ 486 419 Initialiser point d'origine sur un axe au choix ■ 491 420 Mesurer la pièce, angle ■ 517 421 Mesurer la pièce, intérieur d'un cercle (trou) ■ 520 422 Mesurer la pièce, extérieur d'un cercle (tenon) ■ 525 423 Mesurer la pièce, intérieur d'un rectangle ■ 530 424 Mesurer la pièce, extérieur d'un rectangle ■ 534 425 Mesurer la pièce, intérieur